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Introduction
Multiple sclerosis (MS) is a chronic, inflammatory disorder of 

the central nervous system (CNS). It is consider an autoimmune 
disease which is triggered by an environmental agent in a genetically 
susceptible person and to be principally mediated by thymus-derived 
lymphocytes (T cells) [1]. 

Multiples factors had been proposed since the first definition of 
this disease. With a concordance rate of only 25–30% in monozygotic 
twins, however, it is clear that nongenetic factors must also influence 
risk of MS as well. Migration studies have also tended to support an 
environmental role [2-5]. Rapid and apparent changes in risk over a 
single generation strongly suggest an environmental factor or factors 
in MS etiology. Because it seems very probable that MS etiology is 
going to involve multiple disease-susceptibility genes and multiple 
environmental events (with a long latency period between exposure 
and symptom onset), elucidation of the different factors that determine 
MS is likely to be difficult. Nevertheless, certain possible factors are 
suggested by the epidemiology of MS. For example, the apparent 
latitude effect might suggests that sunlight exposure plays a role [6] 
and, in fact, the presence of vitamin D receptors on activated T cells and 
the ability of vitamin metabolites to inhibit interleukin-2 (IL-2) suggest 
a potential mechanism whereby sunlight might exert an effect [7]. Also, 
MS affects women twice as often as men, suggesting sex hormones as 
potential factors in MS etiology. Other potential causal agents include 
a variety of infectious organisms or vaccinations, although, again, no 
consistent association has yet been found to support these.

Pathology
MS is a disease that damages the myelin and causes axonal loss 

in the CNS. Early in the course of an attack there is perivascular 
inflammation, dominated by T cells and macrophages containing 
intracytoplasmic granules of myelin debris. Subsequently, astrocytosis 
and glial scarring occur. These pathologic processes are generally 
most conspicuous in the CNS white matter. Nevertheless, cortical 
and spinal cord gray-matter involvement can also be seen, although 
usually with less lymphocytic infiltration than in white-matter plaques 
[8]. Recent work suggests that MS is pathologically heterogeneous and 
that, perhaps, some cases of MS are due to primary oligodendrocyte 
pathology rather than to a chronic inflammatory process. For example, 
one study described four distinct patterns of demyelination, two of 
which were highly suggestive of a primary oligodendrocyte injury [9]. 
It is even possible that oligodendrocyte apoptosis is the initial event in 
the formation of an MS plaque. 

One noteworthy aspect of the MS success story is that, despite 
progress, we still do not have a coherent model of pathogenesis. We do 
not know the primary trigger or triggers, the specificity of the culprit 
pathogenic immune cells, or the mechanism underlying progressive 

disability in longstanding disease. MS is likely to deliver 1 or 2 more 
big surprises before the final story is fully played out, and a final 
understanding may well prove to be simpler than suggested by our 
current complex models of pathogenesis [10].

 Conclusion #1:” we still do not have a coherent model of pathogenesis, 
but it is clear that the pathogenesis of the MS is multifactorial”.

Genetics
With the advancement in technology and research methods, the 

genetic associations with Multiple Sclerosis have gone further beyond 
the longstanding human leukocyte antigen (HLA) association in MS 
which was first identified 40 years ago and as of now there are more 
than 50 non- HLA genetic risk factors [11,12]. 

 Sawcer et al. [13] noted that the initial attempts to point out the 
susceptible genes in MS were successful by pin pointing the relevance 
of Major Histocompatibility Complex (MHC) on chromosome 6p21 to 
multiple sclerosis. In the early 1970s, investigators were able to show 
association of MS with particular HLA genes (HLA-A3, HLA-B7, and 
DR2), however it was realized that the association of MS with these 
genes was not independent but a reflection of Linkage Disequilibrium 
[13]. 

Genome-wide association studies (GWAS) have contributed greatly 
to the understanding of MS pathogenesis through the identification of 
close to 110 non-MHC associations [14], these interact within related 
canonical gene-gene interaction pathways. MS-associated variants 
appear to influence the function of the adoptive and innate immune 
system rather than the nervous system, but probably this is because 
our incomplete knowledge about the CNS role in many genes initially 
identified as having some immune function [14].

New HLA related genes, like IL-7 receptor, was also found to be 
a gene with susceptibility to MS, IL-7 receptor αγc heterodimer is 
responsible for mediating IL-7 signaling, which is key in mediating 
the differentiation and survival of T cell and B cell [15-17].  Few 
allelic variants responsible for MS may be involved in various other 
autoimmune conditions, pointing towards a common underlying 
factor, for instance, IL2RA mediated susceptibility effects are not only 
seen in multiple sclerosis but also in other autoimmune conditions 
like graves diseases, type 1 diabetes mellitus and rheumatoid arthritis. 
Analysis of epidemiologic data confirms genetic variation as a key 
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determinant of susceptibility to multiple sclerosis and these variations 
may play an important role in the timing of onset of symptom, course 
of the disease and response to treatment.

Familial recurrence risk studies show an increased association of 
developing the condition with a positive family history [18]. Studies in 
twins show a higher risk of multiple sclerosis among monozygotic twins 
when compared to dizygotic twins [19,20]. Another key fact to note is 
the correlation of multiple sclerosis prevalence in monozygotic twins 
and latitude. Variations in MZ concordance by latitude is influenced 
by environmental and genetic factors, supporting multifactorial risk 
factors for multiple sclerosis [21]. With these observation of inheritance 
pattern, the familial recurrence rate nor the twin concordance supports 
a Mendelian inheritance pattern. Instead that the MS-prone genotype 
results from multiple interacting polymorphic genes [22]. Strong 
correlation between HLA and phenotype in patients with MS has 
been observed and despite clinical heterogenecity between Primary 
Progressive MS (PPMS) and Relapsing Remitting (RR)/ Secondary 
Progressive MS (SPMS), studies suggest shared HLA patho-aetiology 
[23]. HLA genetic risk burden explains almost 15% of MS risk [24], 
in contrast, greater genetic link has been observed in twin studies, 
with tetrachoric correlation of 71% in monozygotic and 46% in 
dizygotic pairs [25]. Exerting strongest effect on risk are class II alleles: 
DQA1*01:01-DRB1*15:01 and DQB1*03:01-DQB1*03:02 [24,26] and 
odds ratios of * 3 and * 1.26 have been found for and DRB1*03:01, 
respectively [27]; whereas HLA A*02 and HLA B*44 independently 
reduce susceptibility to MS, but only HLA B*44 has shown to influence 
disease [28]. In addition, DRB1*15:01is thought to be linked with 
earlier disease onset and is more frequently found in females [24,29].

Conclusion # 2: “HLA genes, non HLA genes like IL7, allelic 
variations, and a positive family history all play an important role in the 
pathogenesis of MS”.

Environmental
The major environmental factor is often attributed to a latitudinal 

gradient, with the prevalence of the condition being more common 
in temperate areas compared to tropical areas [18]. One possible 
explanation for this distribution could be due to the migration pattern 
of Northern Europeans, with the parts of the world having higher 
prevalence where Northern Europeans settled [30]. Studies suggest 
that the risk changes with migration, when considering individuals 
migrating from regions of higher prevalence to regions of lower 
prevalence and vice versa [31]. However, while taking into account the 
global distribution of multiple sclerosis one can point out that there are 
exceptions to the rule of latitudinal gradient, as some populations have 
been seen to have higher rates of multiple sclerosis compared to their 
geographic neighbors [32]. Around 15–20% of the affected individuals 
living in temperate regions, report to have a family history of multiple 
sclerosis with a significantly higher rate than the expected prevalence 
in these regions. 

With a concordance rate of only 25–30% in monozygotic twins, 
however, it is clear that non genetic factors must also influence risk 
of MS as well. Migration studies have also tended to support such 
an environmental role [2,4,5]. Such apparently rapid changes in risk 
over a single generation strongly suggest an environmental factor or 
factors in MS etiology. Because it seems very probable that MS etiology 
is going to involve multiple disease-susceptibility genes and multiple 
environmental events (with a long latency period between exposure 
and symptom onset), elucidation of the different factors that determine 
MS is likely to be difficult. Nevertheless, certain possible factors are 

suggested by the epidemiology of MS. For example, the apparent 
latitude effect might suggest that sunlight exposure plays a role [6] and, 
in fact, the presence of vitamin D receptors on activated T cells and the 
ability of vitamin metabolites to inhibit interleukin-2 (IL-2) suggest a 
potential mechanism whereby sunlight might exert an effect [7]. Also, 
MS affects women twice as often as men, suggesting sex hormones as 
potential factors in MS etiology. Other potential causal agents include 
a variety of infectious organisms or vaccinations, although, again, no 
consistent association has yet been found to support these.

In addition, other environmental factors, such as Vitamin D 
deficiency, EBV, smoking, Western diet, and commensal microbes, 
might contribute as risk factors into the development of multiple 
sclerosis. Furthermore they may epigenetically interact with genetic 
risk loci associated [33,34]. Different risk factors such as geographic 
location, month of birth as well as individual and maternal UV 
exposition during pregnancy ultimately determine increased disease 
risk as well. Precise mechanism of action of vitamin D in modulating 
disease onset and course remains to be determined. Vitamin D receptor 
binding can potentially modify HLADR15 haplotype gene expression 
[34], which is considered as the main genetic risk factor [35]. 

Obesity and smoke exposure have been related to presence of 
HLA-DR15 and absence of the protective HLA-A02 allele expression 
[34,36,37]. Yadav et al made an accurate gathering of evidence 
sustaining environmental risk factors. They show how smoking 
duration, intensity, passive exposure, and prior history each show 
independent correlations with multiple sclerosis risk; in addition, 
being an active smoker associates with higher disease activity, severity, 
and quicker progression. More established risk factor is Western diet 
and specially fat and animal food intake and in contrast, decreased risk 
for CNS demyelination has been observed with higher intake of fish 
omega-3 [38,39]. Chronic low-grade inflammation observed in obesity 
is likely to affect immune response since pro-inflammatory cytokines 
and reactive oxygen species cause persistent tissue damage, as well as 
longer duration of leukocytes at the site of inflammation. However, 
given high disparity in prevalence and cohort studies relating MS 
and obesity in adult individuals, Palavra et al hypothesize that obesity 
contributes a higher risk factor early in life, whereas in adulthood 
this may be neutralized. Female childhood obesity has been observed 
to increase risk for MS later in life, whereas male studies show little 
evidence, although research in a similar direction [34,40-42,]. Evidence 
suggest that high carbohydrate and fat rich diet influences intestinal 
permeability, indirectly affecting microbiota derived autoimmunity. 
Western diet also has been seen to shift the structure of the microbiota 
in mice, altering the microbiome’s gene expression and molecular 
pathways [46-48]. 

The study of Germ Free mice have led to relate digestive flora to 
several aspect of human life, such as behavior, brain development, 
sleep architecture or immune system [43,46]. Particularly in MS, gut 
microbiota implication has been studied from different perspectives. 
Recently Held et al related innate mucosal-associated invariant (MAIT) 
cells to MS pathogenesis, because these cells development ultimately 
depends upon microbial flora. Additionally the observation that a 
small fraction of CD8+ T cells in early MS lesions consist of MAIT 
or MAIT-related cells, led authors to theorize that these cells seem to 
be crucial in the “gut-brain axis” with MS [47]. These cells are innate 
T cells lymphocytes restricted to major histocompatibility complex 
(MHC) class I B, most of which are CD8+, which are frequently found 
in gut mucosa, liver and in low proportion in blood and lungs. They 
have been also related to the pathogenesis of other diseases such as 
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inflammatory bowel disease or hepatitis C virus infection.  However, its 
role in general immunity and particularly in MS must still be clarified 
[48]. Although MS microbiota signature remains unclear, the influence 
of microbiota molecular mimicry has been postulated to also be an 
explanation for autoimmunity and MS [44]. 

Disease suppression was observed when altering the composition 
of gut microbiota in experimental autoimmune encephalomyelitis 
(EAE), an animal model of MS. Investigators deduced that it was actual 
innate natural killer T (iNKT) cells depletion the causative agent, as 
they were involved in maintaining reduction of mesenteric Th17 cells, 
given high implication of Th17 cells in MS pathogenesis [49] and 
disease improvement observed after induction of the innate natural 
killer T cells. Thus, these authors propose that gut flora may influence 
the development of EAE and in extension that of MS, in a way that 
altered microbiota relates to increased iNKT cells and iTh17 cells [50]. 
This is also supported by the fact that when Western diet rich in fat 
and sugar and low in Vitamins B and D was administered to animal 
models, increased gut CD4+ Th17 and modification in floral structure 
was observed [51]. Lastly, several authors have proposed that increased 
intestinal permeability (IP) may allow the passage of macromolecules, 
toxins, and bacterial species, and triggering of autoimmunity [45,52]. 
In this line, Buscarinu et al observed significant difference in IP in 
patients with MS, 73% versus 28% in healthy controls.

Despite lacking well controlled clinical studies evaluating disease 
impact of salt in MS, sustained pathological evidences suggest high 
implication in both pathogenesis and progression of disease. Reboldi et 
al observed Interleukin 17-producing T helper cells (TH-17 cells) to be 
the first to cross brain blood barrier. Under salt-enriched conditions, T 
cells exhibit significantly increased potential to differentiate into Th17 
cells in vitro [49,53,54]. Other several studies have shown how sodium 
increase reactivity of endothelial cells to TNFα, NF-kB and reactive 
oxygen species, by overexpressing adhesions molecules and facilitating 
migration into brain tissue [53]. In addition, high sodium conditions 
also promote monocytes, macrophages and CNS-resident microglial 
cells activation which play an important role in the establishment and 
perpetuation of inflammation within the CNS. Refer to Huche et al., 
2016 for detailed information [53]. 

EBV is another widely recognized environmental risk factor of 
multiple sclerosis. Actually, large prospective double matched case 
control study, found a total absence of incident MS among individuals 
without detectable serum antibodies to EBV with a mean interval 
between primary EBV infection and MS onset of 5.6 years, however 
given study limitations and confounding factors recognized by authors, 
only increased risk of MS onset in seropositive EBV can be stated. 
Moreover, an enhanced association between smoking, high anti-EBNA 
titer and increased multiple sclerosis risk has been observed as well. 
This association might sustain in shared EBV activation and nicotine 
metabolism including pathways Jun-c-kinase, MAPK, PKC, and NF-
κB. In addition, although less consistent, increased CDT8-cells have 
been reported in heavy smoking [55].  

 Conclusion #3: “Latitudinal gradient can be attributed as the most 
important environmental factor but attention should also be given to 
other factors such as migration, positive family history and sunlight 
exposure. As women are twice as likely to be affected by MS compared 
to men, the role of sex hormones cannot be neglected. Other possible 
environmental factors that could play a role in pathogenesis of MS would 
be Vitamin D deficiency, EBV infection, smoking and obesity. Western 
diet, which is rich in fat and sugar, can alter the gut flora and promote 

the pathogenesis of MS. Lastly, increased intestinal permeability and 
maternal UV exposition to UV are other possible environmental risk 
factors that could be associated with MS.”

Demyelination
Marked brain atrophy and spinal cervical and thoracic cord 

atrophy with dilation of the cerebroventricular and outer cerebrospinal 
spaces is typically observed in MS patients. In addition, patients with 
progressive forms of MS have increasing CNS atrophy in the spinal 
cord, cerebellum, and cerebral cortex [56]. It is accepted that axonal 
loss, demyelination and iron deposition would result in subcortical 
grey matter shrinkage of great proportions and general atrophy [57]. It 
is theorized that blood flow insufficiency in MS patients would explain 
the above mentioned findings. Gorucu et al. observed higher volume of 
caudocranial and craniocaudal CSF flow volumes and stroke volume in 
MS patients with respect to controls [58]. 

Luchinetti et all defined different patterns of demyelination, where 
patterns I and II showed close similarities to T-cell-mediated or T-cell 
plus antibody-mediated autoimmune encephalomyelitis, respectively 
and where in  patterns III and IV were highly suggestive of a primary 
oligodendrocyte dystrophy or apoptosis, reminiscent of virus - or 
toxin-induced demyelination rather than autoimmunity; the most 
common observed pattern is type II which has a typical architecture 
involving perivenular inflammation and hypoxia-like tissue injury type 
III [9]. Type III is also thought to be a distinctive early demyelination 
pattern, characterized partly by preferential loss of myelin-associated 
glycoprotein, and expression of hypoxia-related antigens, including the 
prominent nuclear expression of hypoxia-inducible factor-1a (HIF-1a) 
[59]. The lesions vary in pattern of myelin loss and mechanism of tissue 
injury, but the pattern of demyelination is uniform within each patient, 
which suggest several distinct mechanisms in early MS. 

In classical white matter lesions axonopathy, gliosis, demyelination 
and microglial activation are hallmarks in pathology. Low-grade 
T cell infiltration, axonal injury and vascular leakage due to BBB 
disruption even in normal appearing white matter (NAWM) have 
been reported as well [60]. These changes are found to be significantly 
less pronounced in patients with acute and relapsing multiple sclerosis 
than in progressive patients [8,61,62]. Initial antigen-specific cytotoxic 
T cells and autoantibodies directed against neuronal and glial antigens 
would cause axonal and neuronal injury and oligodendrocytes death in 
consequence activated macrophages and microglia would lead to tissue 
destruction. Outside-In model or Wallerian degeneration, usually 
induced by anti-myelin autoimmune cells generated in the periphery, 
support this pattern of primary CNS demyelination [63]. 

Grey matter demyelination can be found in neocortex, thalamus, 
basal ganglia, hypothalamus, hippocampus, cerebellum, and spinal 
cord. This pathology would correlate with progression of disease and 
degrees of disability [64]. Major patterns of inflammation are observed 
in focal white matter and active lesions, whereas gray matter lesions, 
results from extension of axonal injury and microglia activation from 
white matter [65,66]. However, grey matter primary lesions may also 
occur. Bo et al identified four types of cortical lesions. Type 1 lesions 
extend across both white matter and grey matter, this lesions would not 
extend to the surface of the brain and its center may be situated in white 
matter, type 2 are lesions within the cerebral cortex that do not extend 
to the surface of the brain or to the subcortical white matter. Type 3 
or subpial, the most common, with characteristic expansion of long 
ribbons of subpial demyelination through adjacent gyri; other type 3 
lesions ‘wedge-shaped” would have its base over the brain surface, a 
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combination of these two patterns is frequently observed. Lastly, type 
4 lesions extend through the full width of the cerebral cortex without 
reaching subcortical white matter [66].

 In progressive MS preexisting lesions are seen to be expanded 
throughout normal appearing white and grey matter showing microglia 
activation causing axonal injury. These findings are almost exclusive to 
SPMS and PPMS and rare or absent in patients with acute or relapsing 
disease. Grothe et al. supported this fact, by finding significantly more 
gray matter affected in SPSM than in RRSM patients [67]. This pattern 
is related to Inside-Out model which suggests high amount of antigen 
released from primary cytodegeneration from axon’s oligodendrocytes 
(inside) to myelin (outside). This would promote autoimmunity and 
inflammatory response, which may lead to further degeneration. 
This model would explain early neurodegeneration, including gray 
matter involvement and axonal degeneration in NAWM [68]. High 
heterogeneity with multifocal lesions is observed when studying 
plaques in multiple sclerosis. Plaques may be related to different stages 
of the disease, however in a same patient different type of plaques may 
be found. In contrast to this disparity, meningeal inflammation was 
present in all the disease stages, affiliated with a breakdown of the 
blood–brain barrier (BBB). The BBB may be relatively persistent since 
vascular changes can be present without concurrent inflammatory 
cells, and, peripheral cytokines and leukocytes present in older, inactive 
lesions. Although BBB disruption usually occurs in the development 
of a new lesion, evidence suggests that it might also arise following 
neurodegeneration in MS [60,69,70].

However, as mentioned earlier, the ultimate cause initiating the 
disease remains ambiguous. Postmortem brain tissue of NAWM 
showed “microglia nodules” with intact BBB not containing leukocyte 
infiltration, astroglyosis or demyelination but containing clusters of 
pre active microglia lesions and macrophages that would eventually 
respond to autoreactive T cells and systemic pro-inflammatory 
cytokines [71]. With this unusual relation the purpose of activated 
microglia as an initial pathogenic event in MS must be considered 
[63,72].

Conclusion # 4: “Four patterns of demyelination have been discussed, 
Type I and II are believed to be T cell mediated with a closer association 
to auto immune demyelination, Type III and IV patterns are seen due 
to primary oligodendrocyte dystrophy and are reminiscent of virus/toxin 
induced demyelination rather than autoimmune demyelination, T2 
was the most commonly observed demyelination pattern. Gray matter 
demyelination would correlate with progression of disease and degree 
of disability. Apart from the demyelination patterns, types of cortical 
lesions have been described as well, which would include, T1- extending 
across the white and gray matter, T2- limited with in the cerebral cortex, 
T3- subpial demyelination extending through adjacent gyri and T4- 
extending through the full width of the cerebral cortex. T3 lesions were 
the most commonly observed lesions”.

Immunopathology
MS is thought to be an autoimmune disease which is triggered by 

an environmental agent in a genetically susceptible person and to be 
principally mediated by thymus-derived lymphocytes (T cells) [1]. MS 
is a disease that damages the myelin and causes axonal loss in the CNS. 
Early in the course of an attack there is perivascular inflammation, 
dominated by T cells and macrophages containing intracytoplasmic 
granules of myelin debris. Subsequently, astrocytosis and glial scarring 
occur. These pathologic processes are generally most conspicuous in the 
CNS white matter. Nevertheless, cortical and spinal cord gray-matter 

involvement can also be seen, although usually with less lymphocytic 
infiltration than in white-matter plaques [9]. 

Recent work suggests that MS is pathologically heterogeneous and 
that, perhaps, some cases of MS are due to primary oligodendrocyte 
pathology rather than to a chronic inflammatory process. For example, 
one study described four distinct patterns of demyelination, two of 
which were highly suggestive of a primary oligodendrocyte injury [73].

It is even possible that oligodendrocyte apoptosis is the initial 
event in the formation of an MS plaque. Because of the complexity and 
heterogeneity of the mechanism involved in the pathogenesis of the 
MS we are going to talk about these various factors in this section and 
then discuss them.

The lesions of multiple sclerosis are characterized as perivenular 
infiltration of myelin basic protein by the T cells and the macrophages 
which initiate a chain reaction of autoimmune responses [74]. 

T cells are only seen in an outer zone of active phagocytosis 
surrounding the lesion core [75]. Changes in normal-appearing white 
matter (NAWM) of MS patients are evident in postmortem tissue. The 
changes observed include a reduction in myelin density, evidence of 
remyelination, and the presence of reactive microglia in the absence 
of T cells [76-78]. Also, molecular studies have reported a reduction 
in myelin-associated glycoprotein in NAWM [79], a change which 
might interfere with axon–oligodendrocyte associations and thereby 
reduce the viability of either or both cells. Such abnormalities may 
be the earliest pathologic changes, preceding both lesion formation 
and clinical symptoms. The presence of axonal injury and loss in MS 
plaques has been recognized for well over a century but these changes 
have been considerably highlighted in recent years [80,81]. Indeed, it 
is now thought to contribute importantly to the persistent neurologic 
deficits experienced by patients in the progressive phase of the 
illness where a threshold of axonal loss is thought to be reached and 
compensatory CNS resources exhausted. Considerable axonal damage 
(i.e., transections and bulb formation) has been demonstrated in acute 
(active) lesions [80,81]. It is also seen to a lesser degree at the active 
margins of chronic plaques and to an even lesser extent in the core of 
chronic active lesions [82,83]. Smaller-diameter axons seem to be more 
sensitive to damage. Although axonal transection is not typically seen 
in NAWM there is, nevertheless, substantial axonal loss in NAWM 
tracts [82,83]. Even as early as 9 months into the disease, a 22% loss has 
been reported in descending tracts distal to a brainstem lesion, with 
preservation of other tracts [84]. Early in the disease, axonal damage 
depends primarily on inflammatory processes.

However axonal loss can continue to occur in the later, less 
inflammatory stages of MS, even in patients with an apparent cessation 
of their clinical and radiologic relapses [85]. Therefore, it seems likely 
that disease mechanisms independent of inflammation may contribute 
to the ongoing axonal loss in MS. 

Inflammatory demyelination is considered to be the main 
finding in MS, but recent studies have shown an actual neuro-axonal 
degeneration and synaptic pathology [86]. Considering the outside-in 
model, the lesions begin to develop from the myelin (outside) to the 
axon (inside). In recent studies axonal injury and gray matter lesions 
in normal-appearing white matter have been demonstrated and in 
spinal cord sections, immunostaining of the neurofilaments show that 
demyelination in animal models for MS precedes axonal injury with 
apoptosis of the oligodendrocytes, indicating that axonal injury could 
be a response to demyelination, here it is seen that the lesions develop 
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from the axon (inside) to the myelin (outside) (Inside-Out model) [87]. 

According to Dendrou et al. [88], it can still be argued whether the 
inception of the autoimmune response begins in the periphery or the 
central nervous system. In the peripheral model, autoreactive T cells 
activated at the peripheral sites, travel to the CNS along with monocytes 
and activated B cells. This model is consistent with experimental 
autoimmune encephalomyelitis (EAE) in animals where emulsified 
CNS antigen and immune stimulants are introduced, leading to the 
production of pathogenic TH1 and TH17 cells in lymph nodes. After 
crossing the blood brain barrier, these cells enter the circulation and 
launch an autoimmune response within the CNS. 

For the most part multiple sclerosis was thought to be a T cell 
autoimmune condition, but recent studies have shown the presence of 
B cells and plasma cells directed towards the oligodendrocytes, myelin 
and neurons in the peripheral blood and the CSF of individuals with 
multiple sclerosis, suggesting that B cells might play an important role 
as the precursors of antibody secreting plasma cells and the activation 
of T cells by acting as antigen presenting cells. As the role of B cell in 
the pathogenesis of multiple sclerosis is elucidated this could lead to the 
emphasis being laid on monoclonal antibodies against CD 20 molecule 
[89,90].

Clinically, the majority of MS patients present with relapsing-
remitting course and within a few years, a large number of these 
patients with or without treatment with immunomodulatory agents 
enter in another phase of disease known as secondary progressive MS. 
Another arm of the immune system, the humoral immune system-
autoantibodies as well as activated complement also play a significant 
role in the pathogenesis of MS [91,92]. The combined activation of 
the cellular and immune wings coupled with disruption in the blood 
brain barrier, activation of cerebral endothelial cells and loss of the 
adherent endothelial junctions [93-95] this could be responsible for the 
development of perivenular demyelinating lesions discussed earlier.

Increased frequencies of antiphospholipids antibodies (APLA) 
are observed in autoimmune conditions apart from systemic lupus 
erythematosus (SLE), which are not necessarily associated with 
thrombosis, as seen in, immune thrombocytopenic purpura (ITP) [96] 
and multiple sclerosis. 

Antiphospholipid antibodies (aPL) and endothelial 
microparticles in MS

It has long been recognized that  aPL occur at high frequency in 
many disorders other than APS and SLE, especially those known to be 
immune-mediated, such as immune thrombocytopenic purport (ITP), 
multiple sclerosis (MS), and rheumatoid arthritis (RA). However, the 
significance of aPL in these disorders has been generally dismissed 
as non-specific or epiphenomenal, partly because the aPL did not 
appear to be related to symptoms, and perhaps also because aPL in 
these disorders is inconsistent with the paradigm that the pathological 
significance of aPL is limited to thrombosis. This review was motivated 
in part by recent findings which indicate that aPL are in fact associated 
with symptoms in non-APS (Bidot et al 2009), non-SLE disorders in 
humans.

The reported frequencies of positive APLA in MS have ranged from 
10% to 44% and 88% [97-101]. One of our article published in 2007 in 
reference to the presence of APLA in MS, we found a high correlation 
of several APLA-IgM associated with exacerbations in MS comparing 
with remission.

Several reviews of the neurological symptoms of APS/SLE are 
available [102-104], and many case reports, e.g., cerebral ischemia [105]. 
However, MS is not thought to involve ischemia, although elements of 
the coagulation cascade are present in MS lesions, including fibrinogen 
and recently, tissue factor and protein C inhibitor [106].

In 2000, our collaborative investigation demonstrated elevated 
endothelial microparticles (EMP) during exacerbations of MS 
[107,108]. Those findings motivated further investigations, this time 
of aPL in MS, with the hypothesis that aPL might be involved in 
endothelial activation in MS. Several prior reports had established 
that aPL commonly occur in MS, but in most of them the patient 
population was heterogeneous or inadequately defined, and there was 
no indication of a relation between aPL and the pathophysiology of 
MS.

To examine the relationship more closely, we tested samples of 
well-defined, treatment-naive MS patients in either exacerbation or 
remission, documented by neurological as well as brain MRI with and 
without contrast. The central finding was that all aPL measured were 
significantly elevated in acute phases vs. remission, and correlated 
strongly with MRI imaging, p = 0.002 [74]. The antigens tested 
included β2GPI, FVII, and four pure PL (CL, PC, PS, PE). Of interest, 
aFVII was never detected in remission but was present in 60% of acute 
MS; and anti-β2GPI was positive in 80% of acute MS. It is possible 
that unidentified and possibly MS-specific auto antibodies were also 
present, judging by the strong reaction to the pure PL in acute, but 
not remission, cases. Unexpectedly, aPL in MS were exclusively of IgM 
class, with no IgG detected.

Because that work showed a direct relation between aPL and 
clinical state in MS, it is plausible to suspect that aPL may be involved 
in the pathogenesis of MS. Of course, the possibility exists that aPL in 
acute MS are epiphenomenal; but the same argument could be levelled 
against the hypothesis that aPL cause thrombosis. In further support, 
Shoenfeld and colleagues clearly demonstrated neuropathological 
effects of aPL in animal models [109-111]. Since some aPL have been 
identified with anti-endothelial (anti-EC) antibodies (earlier cited), 
and since our group [107] and others have documented endothelial 
activation in MS, it is relevant to note that anti-EC have been detected 
in MS and were proposed to contribute to its pathogenesis. In 1989, 
Tsukada et al. found anti-EC in 75% of active MS but in only 4% of 
remission [112]. However, a 1992 report found only 13% positive [113] 
and a later report found only 10% reactive to human umbilical vein EC 
(HUVEC) [114]. On the other hand, another report around the same 
time, but using brain microvascular EC rather than HUVEC, found 
that 12/16 active vs 0/15 inactive MS reacted to EC [91]. This suggests 
that anti-EC in MS are specific for brain microvessels, and would be 
consistent with the fact that CNS lesions in MS tend to develop around 
brain microvessels (Dawson fingers) [115]. 

Conclusion # 6: “To summarize, perivascular inflammation of 
the myelin leading to inflammatory demyelination is considered the 
hallmark of MS, these lesions are dominated by the presence of T cells 
and macrophages and most of the disease is limited to the white matter. 
However, recent studies unearthing new evidence point towards gray 
matter involvement and axonal injury. Another interesting finding is the 
possibility of B cell involvement in the pathogenesis of MS, which has 
led to the development of newer Anti CD20 medications. It can still be 
argued whether the pathogenesis of MS begins in the periphery or the 
central nervous system. Contrary to the popular belief that APLA were 
only associated with thrombotic conditions like ITP, in light of recent 
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studies APLA can also be associated with the pathogenesis of MS.  More 
studies about the effect of the endothelial microparticles must be done, to 
know the role of them in the MS pathogenesis”

Other hypothesis and controversies
Theory of Cerebral spinal fluid volume (CSF): A few studies suggest 

that patients with MS had slightly increased levels of CSF regurgitant 
fraction when compared to the control group, however, that being 
said no statistical significance was found, this slight difference in the 
CSF regurgitant factor could be attributed to an atrophy-dependent 
ventricle volume increase in the MS patients leading to an increased 
mild hyperdynamic situation independent of the venous theory. Chiang 
et al demonstrated a relationship between ventricular morphology 
and aqueductal CSF flow in healthy subjects versus individuals with 
communicating hydrocephalus [58]. 

However, another study failed to detect differences in few of the 
parameters while comparing the CSF of individuals with MS to that of 
the control group, the parameters were no difference was found were 
mean velocity, peak systolic and diastolic velocities and regurgitant 
fraction but were able to demonstrate differences in the craniocaudal 
and caudocranial CSF flow volumes and stroke volume, which were 
found to be higher in patients with relapsing remitting multiple 
sclerosis compared to the control sub group [116]. 

Another theory regarding MS is that basically it is a degenerative 
disorder, similar to Parkinson’s and Alzheimer’s diseases and other 
progressive degenerative CNS disorders of unknown etiology. As 
with many of these conditions, the degenerative process probably 
began many years or possibly decades before the initial symptoms of 
disease presented.  Kerbrat et al supports this claim by saying that the 
adolescents with MS have a significantly reduced brain volume as well 
as a reduced head size [117], implying that the inception of the disease 
was many years ago while the skull was still in the development phase 
[86].

Louapre et al claim that neurodegeneration in multiple sclerosis 
is an event independent of inflammation and that it occurs early in 
the disease making it a significant predictor of clinical disability. 
Advanced neuropathological and imaging studies have thrown 
light on the sustained neurodegenerative mechanisms early in the 
disease, including neuronal and neuritic injury. It can still be argued 
that between inflammation and neurodegeneration, which process 
is primary and which process is secondary and how they correlate 
over the course of the disease. Evidence points out that myelin loss 
in inflammatory white matter lesion can induce axonal degeneration 
locally and that neuronal and axonal loss happen outside areas of 
inflammation, making neurodegeneration an independent event as 
a possible explanation. They theorize that neurodegeneration could 
evolve independent of inflammation, being influenced by genetic and 
metabolic backgrounds and that there is a need to develop animal 
models of MS neurodegenerative pathology and an in vivo biomarker 
of neuronal function to test for neuroprotective agents in progressive 
MS [118].

In another study done by Scott et al. [119], it is theorized that 
monitoring relapse phenotype can be imperative in determining the 
course and the outcome of the disease. Earlier studies suggest that the 
predictive value of relapses becomes mostly or completely obsolete 
after the first 2 to 5 years [120,121]. 

Based on the most commonly used disability scale, worsening 
cases of MS have a higher preponderance towards motor symptoms 

when compared to sensory symptoms after initial attacks [122,123] 
indicating that relapses affecting the motor system are more likely to 
contribute to long term outcomes even after initial relapses, however 
long term dataset was not analyzed in these studies. Gettings et al; and 
Skoog et al noticed that relapses of the motor system and relapses with 
residua in later stages of MS were more likely to have a progressive 
outcome with rapid progression of disability [124,125].

Studies done recently may not be in concordance with earlier 
studies regarding the importance of the temporal placement of various 
types of relapses within the course of MS, that being said, there is a 
general consensus that the mode and severity of initial symptoms has 
an impact on the course of the disease. The difference in the finding of 
the studies could be explained by the exclusion of the mode and severity 
of attacks in the earlier studies when compared to more recent studies 
and the importance of motor attack over sensory attack, incomplete 
recovery over complete recovery and later MS over early MS have only 
been started to be considered in studies recently. Monitoring long term 
natural history cohorts can be a challenge as well, as it can be hard to 
find available detailed information on each relapse in every patient. 

Skoog et.al suggested that motor symptoms without complete 
recovery occurring at any time during the course of the disease have 
the potential to modify the risk of transition to secondary progressive 
multiple sclerosis [129]. It was also stated that there was higher long 
term risk of poor prognosis when slow worsening disease course with 
confirmed sequelae due to relapse occurred [124]. 

In another study [126] discussing the pathology of multiple 
sclerosis, emphasis was laid on antibodies that interfere with the 
process of re-myelination, primarily attacking the proteins that are vital 
to re-myelination, namely the myelin basic protein (MBP), proteolipid 
protein (PLP) and myelin oligodendrocyte protein (MOG). Anti MOG 
antibodies were seen in high quantities from the brain tissue acquired 
during autopsy of diseased individuals. Another protein mention in 
this study was AN2, which is a cell surface glycoprotein expressed 
on oligodendrocyte progenitor cells in the developing and developed 
CNS [127]. Anti AN2 antibodies have been detected in high quantities 
in the CSF of certain patients reporting active relapses [128]. The 
manner of working of the anti AN2 antibodies was studies in vitro and 
it was found that these antibodies caused issue with re-myelinating 
process by blocking the migration of oligodendrocyte precursor cells, 
myelin synthesis, which could eventually lead to the destruction of 
oligodendrocytes, the presence of these auto antibodies could be a fair 
explanation to the inability to re-myelinate. It is also interesting to note 
the discussion of another set of auto antibodies, the antibodies against 
the axon, as these antibodies have been detected in high quantities 
in the CFS of multiple sclerosis patients and were also present in the 
autopsy tissue of diseased individuals, these antibodies could be a 
possible explanation for the axonal pathology seen in MS, as it was seen 
that these antibodies were not only seen in the active lesions but had 
infiltrated the white matter without any apparent demyelination and 
axonal damage was independent of oligodendrocyte pathology [129]. 

Contribution of PTX3 to antiinflammatory effects in MS and its 
animal model EAE.

The PTXC3 is an Acute Phase reaction protein in neuroinflammatory 
diseases and recent studies revealed the induction of the phagocytosis 
of the myelin, locally; but do not point to a role for PTX3 in controlling 
the development of autoimmune neuroinflammation [130].   

The use of autologous hematopoietic stem cell transplant (HSCT) 
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as second-line therapy for relapsing multiple sclerosis (MS) is debated 
by two experts on MS.

One of the experts advocates for using HSCT as a second-line 
therapy for patients with a high level of disease activity and resistant 
to standard treatment, being polemic the real meaning of “standard 
treatment”.

The other professor advocates for not using HSCT as a second-line 
therapy for MS. He refers that the efficacy of the monoclonal therapies 
(even the recently approved or anticipated monoclonal therapies 
(daclizumab and ocrelizumab) and HSCT is fairly similar, being the 
treatment-associated mortality much higher for HSCT, suggesting 
HSCT for third-line therapy [130].   

Conclusion #7: “The enunciation of several other hypothesis strongest 
suggest the multifactorial mechanism in the pathogenesis of the MS”.
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