
Review Article

Biomedical Genetics and Genomics 

 Volume 4: 1-6Biomed Genet Genomics, 2019              doi: 10.15761/BGG.1000147

ISSN: 2398-5399

An overview of the “-omics” fields at the forefront of next-
generation personalized medicine and fundamental systems 
biology studies
Gordon W Irvine* and Sarah Nguyen
The University of Texas at Dallas, Department of Chemistry, Richardson, TX, USA

Abstract
The collection of disciplines referred to as “-omics” generally includes genomics, proteomics, and metabolomics, with other sub-fields including transcriptomics, 
metallomics, and lipidomics playing important roles in the context of emerging healthcare applications. The rapid development in computing power and artificial 
intelligence for the analysis of immense datasets has great potential for generating disease predicting models and may revolutionize personalized and preventative 
medicine in the near future. However, these algorithms rely on consistent formatting of data, turning unstructured clinical data into semi-structured data, and reliably 
annotating putative structures from mass spectrometry data, which are significant challenges. In addition, the complexity of biological systems complicates modeling 
outside of specific metabolic pathways or genetic interactions; but hidden within this complexity are the biochemical fingerprints that can enable personalized 
treatment. Indeed, combining analyses of the -omics fields along the structure of the central dogma of biology would represents a herculean task, but would yield 
incredible predictive power. This review will introduce the major -omics fields listed above, introduce preliminary successes of these methods, and discuss their 
potential for application in biomedicine. 
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Introduction
Next-generation personalized medicine has the potential to 

transform healthcare as we know it by considering individual differences 
in genetics, through genomics, and responses to environmental 
exposure, through metabolomics, lipidomics, and metallomics. The 
central dogma of biology describes the process of gene transcription 
and translation that produces proteins that act a biological catalysts 
and key gatekeepers of metabolic pathways (Figure 1). Systems biology 
seeks to analyze key players in this dogma, from gene to metabolite, to 
uncover novel associations, biomarkers of disease, and develop novel 
strategies for the generation of therapeutics, antibiotics, and antitumor 
drugs. This review will focus on recent developments in analytical 
chemistry and molecular biology that have led to the generation of a 
vast amount of “-omics” data that must be standardized and combined 
for a complete systems biology description of healthy and diseased 
states. While still in their infancy, the -omics fields have great potential 
for future healthcare applications, enabled by the power of big data and 
artificial intelligence (AI)-based solutions including machine learning.

Since the discovery of the DNA double helical structure, the 
chemical means of storing information, the field of genetics has 
expanded exponentially. The traditional model of Mendelian 
genetics and the “one-gene one-polypeptide” hypothesis have been 
demonstrated to be overly simplistic descriptions of the complexity of 
genetic interactions and expression. Indeed, spliceosomes can generate 
multiple products from a single gene, representing a significant source 
of genetic diversity that can be clinically relevant for analysis of certain 
cancers [1,2]. Thus, for accurate prediction of treatment outcomes and 
disease risks, both genotypic and phenotypic considerations must be 
incorporated for a personalized yet holistic assessment. 

Genomics
As the first -omics field, genomics was enabled by the development 

of DNA amplification techniques and automated sequencing in the 
1980s and 90s [3-5]. The human genome project soon followed and 
promised unprecedent insight into various genetic diseases and ushered 
in the age of omics. Despite the successful mapping of the human 
genome [6], as well as those of other organisms [7], challenges remain 
for making sense of the immense amount of data, the functionality of 
non-coding regions [8], as well as genetic responses to environmental 
conditions [9].

Next-generation sequencing technologies have dramatically 
reduced the costs associated with genetic analysis, allowing for 
comparative studies that are important for evolutionary biology 
and analysis of polymorphisms on a large scale. This is essential for 
genomics, as large datasets must be generated to build algorithms that 
can be used for various applications such as in silico drug repurposing 
for cancer patients [10]. The ability to inexpensively generate large 
amounts of meaningful data that is accurately annotated and deposited 
in accessible databases will be key to future -omics technologies. Thus 
the next-generation sequencing technologies have underpinned the 
explosion of potential for genomics to assist in the development of 
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novel treatments and personalized medicine facilitated by individual 
genome sequencing [11,12].

A limitation of genomics is that the presence of a gene does not 
necessarily indicate its influence on the phenotype, which can be 
affected by protein synthesis and degradation rates, RNA splicing and 
silencing, and environment influences on the gene products. Thus, for 
a closer examination of phenotypes, examination of the functional 
products of genes, proteins, must be performed.

Proteomics
The field of proteomics has traditionally relied on chromatography 

coupled to mass spectrometry for data generation, but NMR studies 
have also made valuable contributions to the field. The power of high-
resolution mass spectrometry can distinguish between proteins and 
various post-translational modifications (PTMs), which are often 
essential for protein function and serve as a key biological regulation 
process. For example, lysine acetylation was demonstrated to play a 
key role in regulating cellular metabolism through proteomic methods 
[13]. Thus, the genes coding for these proteins may not influence 
the predicted phenotype without post-translational activation by 
acetylation/phosphorylation or by association with co-factors, such as 
metals or small organic molecules (see the metallomics section).

As a representative example, Choudhary, et al. [14] used LC-MS/
MS to identify 3600 lysine sites on 1750 proteins. From the massive 
dataset, the authors quantitatively assessed the acetylome and 
connected functionally related proteins. Such studies are necessary to 
unravel complex protein-protein interactions (often referred to as the 
interactome) and PTMs for a more complete understanding of systems 
biology. This is especially important as protein degradation can be 
signaled by PTMs and changes in the modification rates can manifest 
in altered protein concentrations and metabolic flux [15].

Metabolomics
In addition to proteins, their substrates can be systematically 

examined to reveal various medical conditions and are the most 
sensitive to environmental factors and the most downstream target that 
are affected by protein activity and metabolic fluxes. The concentration 

and nature of metabolites is often thought of as the most sensitive 
phenotypic marker. In addition, the presence of exogenous metabolites 
may be indicative of infection and serve as a biomarker for clinical 
diagnoses. The metabolome is composed of many classes of compounds 
with diverse properties, making global analyses of all metabolites in a 
given system challenging. The metabolome is often crudely separated by 
polarity due to chromatographic considerations (see the Methodology 
section), with the hydrophobic “lipidome” considered a sub-field due 
to immense amount of structures that are classified as lipids.

Lipidomics
Because of the diverse range of lipid classes and their individual 

importance in biological systems, the field of lipidomics is often 
distinguished from metabolomics [16]. Since the mid-2000s, the 
rapid development in analytical equipment capable of separating 
(chromatography), detecting (mass spectrometry), and analyzing the 
structure of lipids (tandem mass spectrometry) has enabled large-scale 
data generation comparable to and even exceeding that of genomics 
and proteomics. The development of general (LipidBLAST and 
LipidPioneer) [17,18] and species-specific (MtB LipidDB) [19] lipid 
databases has facilitated rapid annotation and analysis via LC-MS/MS. 
In addition to the retention time, mass information, and characteristic 
MS/MS fragmentation patterns used to populate these databases, ion-
mobility data has the potential to provide another layer for positive 
structure identification in a field where authentic standards for the vast 
amount of molecules are not available [20].

Using the complied and publicly-available databases, lipidomics 
has emerged as a promising option for the rapid identification of 
biomarkers of radiation exposure, ovarian and prostate cancers, 
multiple sclerosis, nonalcoholic steatohepatitis and cardiovascular 
disease to name a few. For clinical application, however, challenges 
related to individual variation, sample preparation and handling, 
variability due to environmental factors, and instrumental accessibility 
must first be addressed [21-27].

Metallomics
As another sub-field of metabolomics, metallomics differs in 

that metal substrates are largely unchanged as they pass through 
metabolic pathways, unlike metabolites, and largely act as co-factors 
and structural components of proteins and enzymes. While the ligands 
and oxidation state of some metals can be altered, metal flux is largely 
governed by uptake, affinity gradients, equilibria, and export/import 
mechanisms [28].

Metal acquisition is an essential process for all organisms, and 
pathogenic bacteria have evolved specialized systems for obtaining 
metals such as iron, zinc, and copper from their hosts [29,30]. In 
response, hosts have development strict regulatory systems to limit 
the amount of “free” metals through a complex system of chaperones, 
transport proteins, storage proteins and high-affinity functional 
metalloenzymes [31-36].

In addition to isolated functional studies of metalloproteins and 
determination of binding constants that drive the translocation of 
metals, whole cell extracts can be analyzed to determine the localization 
and importance of metals in a more biological context. Indeed, whole 
proteome analysis of free zinc levels and their responses to toxic metal 
exposure can reveal novel insights into detoxification mechanisms and 
metabolic responses to heavy metals [37,38]. This is often achieved 
using fluorescent metal sensors that are specific for certain metals 

Figure 1. The central dogma of systems biology. The -omics fields and sub-fields are 
provided in the blue boxes with indicated influencing factors nearby. Because all fields 
and factors listed above can affect one another, the simplistic arrows provide only a general 
scheme of cascading influence. It should be noted that environmentally induced changes 
in the metabolome can result in a feedback loop, ultimately influencing genetics and gene 
products for example.
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and can be tuned in terms of binding affinity [39]. The Petering lab 
has pioneered the analysis of the Zn-proteome using reactions with 
various ligands and senors to classify biologically relevant zinc pools 
[40,41] In addition, the Lindahl group has identified iron species and 
the “ironome” response to various growth conditions in yeast and 
other cells with spatial resolution down to the mitochondria [42-44]. 
Understanding the speciation and roles that metals play in response to 
various conditions is key to a complete understanding of bioinorganic 
chemistry and its role in systems biology.

Methodologies for next-generation -omics: mass spectrometry 
as a multi-functional analytical tool

Recent advances in analytical techniques have revolutionized the 
field of metabolite and lipid biology allowing an “-omics” approach to 
be taken to tackle tough questions regarding lipid structure and function 
[45]. The adaptability of MS allows it to act as a swiss army knife of 
analytical techniques with the ability to deliver both quantitative and 
qualitative information [46,47]. This emerging multi-functionality has 
yet to be fully exploited and holds great promise (Figure 2). 

In addition, to probe global protein conformation, ion-mobility 
(IM)-MS is becoming an increasingly popular tool which can easily 
distinguish between conformers in solution by drift times in a gas flow, 
which are governed by the overall shape of the molecule [48-50]. IM-
MS has also been applied for the determination of lipid structure and to 

distinguish between proteins and isomers [51]. This provides a second 
level of molecular identification after the crude MS mass measurement 
and can facilitate more accurate identification of metabolites.

As an additional level of structure analysis that can be used for peak 
annotation, tandem MS (MSn) is commonly used in proteomics and 
metabolomic analysis and it fragments the protein or small molecule. 
The resulting fragmentation pattern can be analysed to determine 
structure and pinpoint modification or ligand binding sites [52-54]. 
MSn is needed to distinguish between different lipids with the same 
m/z and locate modified residues in proteins. Thus, the MS platform is 
multi-functional for dynamic -omic analysis of the interactions of lipids, 
metabolites, and proteins during disease and infection progression and 
can be used for detailed studies of virulence and health outcomes.

The discovery of novel virulence factors can be achieved using 
MS methods for high-throughput analysis of bacterial metabolites. 
Limitations due to the vast array of lipids and other metabolites present 
in an extract and unequal ionization efficiency can be overcome by 
lipid-class specific modification protocols that facilitate their analysis 
by MS [55]. In addition to qualitative data regarding the identity of 
lipids, polar metabolites, and proteins, quantitative analysis can be 
achieved through the use of isotopically labelled internal standards or 
control cell extracts grown in isotopically-enriched media [56].

The cornucopia of lipid species can be separated simply by 
switching ion modes in the MS.[57,58] Species such as wax diesters, 
saccharolipids and free fatty acids ionize readily in negative-ion mode 
whereas classes such as diacyltrehaloses, glycerolipids and mycobactins 
are found primarily in the positive-ion spectra [59,60]. Further 
separation can be achieved through chromatographic and ion-mobility 
methods in addition to MSn, which can distinguish between different 
lipid structures with the same mass [61].

By analysing vital lipid concentrations during the infection process, 
key insights can be gained into their function and infection mechanisms 
[62]. In addition, studying the lipid composition of gene knockouts can 
elucidate bacterial strategies for metabolism modification in response 
to shutdown of important biochemical pathway by antibiotics [63,64] 
Upon identification of backup metabolic pathways, synergistic 
antibiotic intervention strategies can be tested where multiple pathways 
are targeted to prevent the development of resistance and make the 
overall treatment more effective [65]. By taking a systems approach 
to tackle antibiotic-resistant infections, more effective interventions 
can be developed to improve patient outcomes. Thus, MS-based 
metabolomic approaches have significant potential applications in 
screening, environmental monitoring, fundamental biological studies, 
and rapid identification of virulent strains of common pathogens.

In the field of metallomics, inductively coupled plasma (ICP)-MS 
is useful for studying metal distribution and associate species after 
chromatographic separation or tissue fixation [66,67]. In addition, 
techniques such as Mossbauer spectroscopy and EXAFS can be used 
to probe metal species distribution in biological samples, although they 
typically require significant sample preparation and cleanup [68].

Big Data
The significant amount of data generated by the previously 

described -omics fields provides a foundation that may allow future 
researchers to “stand on the shoulders of giants”, which may be more 
accurately be referred to standing on the shoulders of giant databases. 
Through mining of the significant amount of previously generated data, 
correlations can be drawn between seemingly disparate experiments 

Figure 2. An example of lipidomic profiling using tandem MS (MSn), which can be used  
reveal identities of key lipids through mass matching and fragmentation pattern assignment 
and provide a platform for quantification.
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and datasets to more clearly understand medically and biologically 
important phenomena [69].

In addition, significant amounts of data from electronic medical 
records can be analysed for the discovery of novel drug-gene interactions 
and a refined characterization of pharmaceutical side-effects [70]. 
Thus, big data will further enable systems and clinical pharmacological 
approaches at an integrative and holistic level that can be applied to an 
individual for patient-specific treatment and healthcare maintenance.

Omics in action – Pharmacogenomics
Gene variations play an important role in determining a person’s 

response to medication, affecting the medication’s efficacy and/or 
safety profile [71]. While each person’s genetic makeup is unique, most 
modern day medications are developed in a “one-size-fits-all” manner, 
leading to sub-optimal treatment outcomes. Pharmacogenetics 
enhance patient care by combining genomics and pharmacology to 
customize patient-specific treatments which lower adverse drug event 
(ADE) risks and optimize dosing. Additionally, pharmacogenomics 
can proactively distinguish drug responders from non-responders 
to further assist in selecting the most ideal therapy for a patient 
[72]. The understanding of the genetic foundation and inter-patient 
variability in drug responses have propelled clinical medicine towards 
individualized patient care management. Pharmacokinetics play a 
key role in pharmacogenomics, which studies genetic variations in 
enzymes, receptors, and transporters which affect a drug’s metabolism, 
elimination, absorption, and distribution [73].

Pharmacogenomics have been appreciated in the many specialty 
medical fields. Substantial advances in genome interrogation 
techniques have identified pharmacogenomic biomarkers for several 
cardiovascular drugs including: clopidogrel, warfarin, and beta-
blocking agents. For example, clopidogrel is an antiplatelet agent 
by inhibiting platelet P2Y12 receptors and is used to prevent stent 
thrombosis in patients who require stent placement after an acute 
coronary syndrome to decrease mortality rates [74]. Clopidogrel is an 
inactive prodrug that must be metabolized to its bioactive form by the 
hepatic enzyme protein CYP2C19. Because of 25 known polymorphic 
gene variation of CYP2C19, patient response to this therapy varies 
greatly depending on individual genetics. Genotyping CYP2C19 
allow clinicians to identify patients who would be poor responders 
or potentially resistant to clopidogrel, and guide them towards more 
effective antiplatelet therapies.

Warfarin an anticoagulation agent used to treat and prevent venous 
thromboembolism as well as to prevent stroke in patients with atrial 
fibrillation. Warfarin targets and inhibits the enzyme vitamin K epoxide 
reductase complex subunit-1 (VKORC1) to prevent the activation 
of clotting factors VII, IX, X, II, and proteins C and S [75]. Warfarin 
is metabolized by hepatic enzyme protein CYP2C9. Variations in 
VKORC1 and CYP2C9 play a role in variation in warfarin responses 
and are genetic determinants of dosing [76]. A marker of warfarin 
resistance is the VKORC1 D36Y variant, which can be identified by 
pharmacogenomic advancements and technology.

Beta-blocking agents inhibit the beta-1 adrenoreceptors and 
decrease catecholamine stimulation. This class of medication shows 
improved mortality in patients with heart failure by preventing 
and reversing cardiac remodeling. Beta-blockers are metabolized 
by the enzyme CYP2D6 and some individual carry a variant of 
the CYP2D6 enzyme that decreases their ability to metabolize this 
medication, thereby increasing the risk of symptomatic hypotension 

and bradycardia [77]. While patients are not readily tested for the gene 
variation, pharmacogenomics played a clinical role in beta-blocker 
treatments in patients. The Federal Drug Association (FDA) utilized 
pharmacogenomics to identify that 8% of the Caucasian population 
lack this enzyme altogether. The use of pharmacogenomics allows 
clinicians to identify patients who are on concomitant medications 
that inhibit the CYP2D6 enzyme and are at higher risk of being poor 
metabolizers of beta-blockers. In doing so, healthcare providers can 
provide the most optimal care for their patients who require this class 
of medication.

Substantial advancements in the field of pharmacogenomics 
have been recognized by the FDA. Biomarkers in FDA drug labeling 
include the specific genetic biomarkers and their role in drug exposure 
which affects response variability and risks of adverse drug events and 
the inclusion of pharmacogenomics in drug labeling have assisted 
providers in drug selection and dosing recommendations which are 
optimal for their specific patients.

While still in its infancy, pharmacogenomics have been useful 
in precision medicine and individualizing patient care. However, its 
application is not readily accessible nor affordable, thus not a viable 
option for many patients and providers. Further advancements are 
required before this technique is readily utilized in normal practice, 
but with the development of big data and AI technologies the field may 
becoming increasingly accessible in the coming years.

Conclusions
The powerful analytical tools, some of which were described herein, 

used in the -omics fields have generated massive amounts of data and 
provided unprecedented insight into various biological process. Future 
challenges will include harmonization of disparate datasets containing 
various types of information from the various -omics fields and 
subsequent algorithmic analysis to identify novel interactions, drug 
uses, and predict patient responses to certain treatments. While still in 
its early stages, the -omics fields exhibit significant promise as medicine 
shifts towards a holistic focus of the individual as a dynamic system at 
the confluence of genes, proteins, metabolites, and metals.

References
1.	 Worby CA, Simonson-Leff N, Clemens JC, Kruger RP, Muda M, et al. (2001) The 

sorting nexin, DSH3PX1, connects the axonal guidance receptor, Dscam, to the actin 
cytoskeleton. J Biol Chem 276: 41782-41789. [Crossref] 

2.	 Gibb EA, Enfield KS, Tsui IF, Chari R, Lam S, et al. (2011) Deciphering squamous cell 
carcinoma using multidimensional genomic approaches. J Skin Cancer 2011: 541405. 
[Crossref] 

3.	 Mullis K, Faloona F, Scharf S, Saiki R, Horn G, et al. (1986) In Cold Spring Harbor 
symposia on quantitative biology; Cold Spring Harbor Laboratory Press: 51: 263.

4.	 Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, et al. (1986) Fluorescence 
detection in automated DNA sequence analysis. Nature 321: 674-679. [Crossref] 

5.	 Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, et al. (1991) 
Complementary DNA sequencing: expressed sequence tags and human genome 
project. Science 252: 1651-1656. [Crossref]  

6.	 Istrail S, Sutton GG, Florea L, Halpern AL, Mobarry CM, et al. (2004) Whole-genome 
shotgun assembly and comparison of human genome assemblies. Proc Natl Acad Sci U 
S A 101: 1916-1921. [Crossref] 

7.	 Cheng S, Melkonian M, Smith SA4, Brockington S5, et al. (2018) 10KP: A phylodiverse 
genome sequencing plan. Gigascience 7: 1-9. [Crossref] 

8.	 Williams SM, An JY, et al. (2018) An integrative analysis of non-coding regulatory 
DNA variations associated with autism spectrum disorder. Mol Psychiatry. [Crossref] 

9.	  Baker BH, Berg LJ, Sultan SE (2018) Context-Dependent Developmental Effects of 

http://www.ncbi.nlm.nih.gov/pubmed/11546816
http://www.ncbi.nlm.nih.gov/pubmed/21234096
http://www.ncbi.nlm.nih.gov/pubmed/3713851
http://www.ncbi.nlm.nih.gov/pubmed/2047873
http://www.ncbi.nlm.nih.gov/pubmed/14769938
http://www.ncbi.nlm.nih.gov/pubmed/29618049
http://www.ncbi.nlm.nih.gov/pubmed/29703944


Irvine GW (2019) An overview of the “-omics” fields at the forefront of next-generation personalized medicine and fundamental systems biology studies

 Volume 4: 5-6Biomed Genet Genomics, 2019              doi: 10.15761/BGG.1000147

Parental Shade Versus Sun Are Mediated by DNA Methylation.  Front Plant Sci  9: 
1251. [Crossref]

10.	Cheng F, Lu W, Liu C, Fang J, Hou Y, et al. (2019) Nature communications.

11.	 Besser J, Carleton HA, Gerner-Smidt P, Lindsey RL, Trees E (2018) Next-generation 
sequencing technologies and their application to the study and control of bacterial 
infections. Clin Microbiol Infect 24: 335-341. [Crossref]

12.	Nagahashi M, Shimada Y, Ichikawa H, Kameyama H, Takabe K, et al. (2019) Next 
generation sequencing-based gene panel tests for the management of solid tumors. 
Cancer sci 110: 6-15. [Crossref]

13.	Zhao S, Xu W, Jiang W, Yu W, Lin Y, et al. (2010) Regulation of cellular metabolism 
by protein lysine acetylation. Science 327: 1000-1004. [Crossref]

14.	Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, et al. (2009) Lysine acetylation 
targets protein complexes and co-regulates major cellular functions. Science 325: 834-
840. [Crossref]

15.	Wu X, Gong F, Cao D, Hu X, Wang W (2016) Proteomics. 16: 847.

16.	Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4: 594-610. 
[Crossref] 

17.	Cajka T, Fiehn O (2017) LC-MS-Based Lipidomics and Automated Identification of 
Lipids Using the LipidBlast In-Silico MS/MS Library. Methods Mol Biol 1609: 149-
170. [Crossref]

18.	Ulmer CZ, Koelmel JP, Ragland JM, Garrett TJ, Bowden JA (2017) LipidPioneer: A 
Comprehensive User-Generated Exact Mass Template for Lipidomics. J Am Soc Mass 
Spectrom 28: 562-565. [Crossref] 

19.	Sartain MJ, Dick DL, Rithner CD, Crick DC, Belisle JT (2011) Lipidomic analyses of 
Mycobacterium tuberculosis based on accurate mass measurements and the novel “Mtb 
LipidDB”. J Lipid Res 52: 861-872. [Crossref] 

20.	Paglia G, Astarita G (2017) Metabolomics and lipidomics using traveling-wave ion 
mobility mass spectrometry. Nat Protoc 12: 797-813. [Crossref] 

21.	Pannkuk EL, Laiakis EC, Mak TD, Astarita G, Authier S, et al. (2016) A Lipidomic 
and Metabolomic Serum Signature from Nonhuman Primates Exposed to Ionizing 
Radiation. Metabolomics p. 12. [Crossref] 

22.	Zhang Y, Liu Y, Li L, Wei J, Xiong S, et al. (2016) High resolution mass spectrometry 
coupled with multivariate data analysis revealing plasma lipidomic alteration in ovarian 
cancer in Asian women. Talanta 150: 88-96. [Crossref] 

23.	Zhou X, Mao J, Ai J, Deng Y, Roth MR, et al. (2012) Identification of plasma lipid 
biomarkers for prostate cancer by lipidomics and bioinformatics. PLoS One 7: e48889. 
[Crossref]

24.	Del Boccio P, Pieragostino D, Di Ioia M, Petrucci F, Lugaresi A, et al. (2011) Lipidomic 
investigations for the characterization of circulating serum lipids in multiple sclerosis. J 
Proteomics 74: 2826-2836. [Crossref] 

25.	Loomba R, Quehenberger O, Armando A, Dennis EA (2015) Polyunsaturated fatty acid 
metabolites as novel lipidomic biomarkers for noninvasive diagnosis of nonalcoholic 
steatohepatitis. J Lipid Res 56: 185-192. [Crossref]

26.	Hinterwirth H, Stegemann C, Mayr M (2014) Lipidomics: quest for molecular lipid 
biomarkers in cardiovascular disease. Circ Cardiovasc Genet 7: 941-954.

27.	   Rai S, Bhatnagar S (2017) Novel Lipidomic Biomarkers in Hyperlipidemia and 
Cardiovascular Diseases: An Integrative Biology Analysis.  OMICS  21: 132-142. 
[Crossref]

28.	Banci L, Bertini I, Ciofi-Baffoni S, Kozyreva T, Zovo K, et al. (2010) Affinity gradients 
drive copper to cellular destinations. Nature 465: 645-648. [Crossref]

29.	Tiedemann MT, Pinter TB, Stillman MJ (2012) Insight into blocking heme transfer 
by exploiting molecular interactions in the core Isd heme transporters IsdA-NEAT, 
IsdC-NEAT, and IsdE of Staphylococcus aureus. Metallomics 4: 751-760. [Crossref] 

30.	Tiedemann MT, Heinrichs DE, Stillman MJ (2012) Multiprotein heme shuttle pathway 
in Staphylococcus aureus: iron-regulated surface determinant cog-wheel kinetics. J Am 
Chem Soc 134: 16578-16585. [Crossref] 

31.	Adlard PA, Parncutt J, Lal V, James S, Hare D, et al. (2015) Metal chaperones prevent 
zinc-mediated cognitive decline. Neurobiol Dis 81: 196-202. [Crossref] 

32.	Taylor JM, Heinrichs DE (2002) Transferrin binding in Staphylococcus aureus: 
involvement of a cell wall-anchored protein. Mol Microbiol 43: 1603-1614. [Crossref] 

33.	Ott DB, Hartwig A, Stillman MJ (2019) Competition between Al3+ and Fe3+ binding to 
human transferrin and toxicological implications: structural investigations using ultra-
high resolution ESI MS and CD spectroscopy. Metallomics 11: 968-981. [Crossref] 

34.	Orihuela R, Fernández B, Palacios O, Valero E, Atrian S, et al. (2011) Ferritin and 
metallothionein: dangerous liaisons.  Chem Commun (Camb)  47: 12155-12157. 
[Crossref] 

35.	Pinter TB, Stillman MJ (2014) The zinc balance: competitive zinc metalation of 
carbonic anhydrase and metallothionein 1A. Biochemistry 53: 6276-6285. [Crossref] 

36.	Pinter TB, Irvine GW, Stillman MJ (2015) Domain Selection in Metallothionein 
1A: Affinity-Controlled Mechanisms of Zinc Binding and Cadmium 
Exchange. Biochemistry 54: 5006-5016. [Crossref] 

37.	Namdarghanbari MA, Bertling J, Krezoski S, Petering DH (2014) Toxic metal 
proteomics: reaction of the mammalian zinc proteome with CdÂ²â�º.  J Inorg 
Biochem 136: 115-121. [Crossref] 

38.	Petering DH (2016) Reactions of the Zn Proteome with Cd2+ and Other Xenobiotics: 
Trafficking and Toxicity Chemical research in toxicology Chem Res Toxicol 30: 189-
202.

39.	Karim MR, Petering DH (2016) Newport Green, a fluorescent sensor of weakly 
bound cellular Zn(2+): competition with proteome for Zn(2). Metallomics 8: 201-210. 
[Crossref] 

40.	Nowakowski AB, Petering DH (2011) Reactions of the fluorescent sensor, Zinquin, 
with the zinc-proteome: adduct formation and ligand substitution.  Inorg Chem  50: 
10124-10133. [Crossref]

41.	Meeusen JW, Nowakowski A, Petering DH (2012) Reaction of metal-binding ligands 
with the zinc proteome: zinc sensors and N,N,N’,N’-tetrakis(2-pyridylmethyl)
ethylenediamine. Inorg Chem 51: 3625-3632. [Crossref] 

42.	Holmes-Hampton GP, Jhurry ND, McCormick SP, Lindahl PA (2013) Iron content 
of Saccharomyces cerevisiae cells grown under iron-deficient and iron-overload 
conditions. Biochemistry 52: 105-114. [Crossref]

43.	 Jhurry ND, Chakrabarti M, McCormick SP, Holmes-Hampton GP, Lindahl 
PA (2012) Biophysical investigation of the ironome of human jurkat cells and 
mitochondria. Biochemistry 51: 5276-5284. [Crossref] 

44.	McCormick SP, Moore MJ, Lindahl PA (2015) Detection of Labile Low-Molecular-
Mass Transition Metal Complexes in Mitochondria.  Biochemistry  54: 3442-3453. 
[Crossref] 

45.	Triebl A, Trötzmüller M, Hartler J, Stojakovic T, Köfeler HC (2017) Lipidomics by 
ultrahigh performance liquid chromatography-high resolution mass spectrometry and 
its application to complex biological samples. J Chromatogr B Analyt Technol Biomed 
Life Sci 1053: 72-80. [Crossref] 

46.	Wang M, Wang C, Han X (2016) Selection of internal standards for accurate 
quantification of complex lipid species in biological extracts by electrospray ionization 
mass spectrometry-What, how and why? Mass spectrom rev 6: 693-714 [Crossref]

47.	Garrett TA (2016) Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology 
of Lipids.

48.	Lanucara F, Holman SW, Gray CJ2, Eyers CE1 (2014) The power of ion mobility-
mass spectrometry for structural characterization and the study of conformational 
dynamics. Nat Chem 6: 281-294. [Crossref]

49.	Zhou M, Politis A, Davies R, Liko I, et al. (2014) Ion mobility-mass spectrometry 
of a rotary ATPase reveals ATP-induced reduction in conformational flexibility. Nat 
Chem 6: 208-215. [Crossref] 

50.	Chen SH1, Chen L, Russell DH (2014) Metal-induced conformational changes of 
human metallothionein-2A: a combined theoretical and experimental study of metal-
free and partially metalated intermediates. J Am Chem Soc 136: 9499-9508. [Crossref] 

51.	Hines KM, May JC, McLean JA, Xu L (2016) Evaluation of Collision Cross Section 
Calibrants for Structural Analysis of Lipids by Traveling Wave Ion Mobility-Mass 
Spectrometry. Anal Chem 88: 7329-7336. [Crossref] 

52.	Han X, Gross RW (1995) Structural determination of picomole amounts of 
phospholipids via electrospray ionization tandem mass spectrometry. J Am Soc Mass 
Spectrom 6: 1202-1210. [Crossref] 

53.	Witze ES, Old WM, Resing KA, Ahn NG (2007) Mapping protein post-translational 
modifications with mass spectrometry. Nat Methods 4: 798-806. [Crossref] 

http://www.ncbi.nlm.nih.gov/pubmed/30210520
http://www.ncbi.nlm.nih.gov/pubmed/29074157
https://www.ncbi.nlm.nih.gov/pubmed/30338623
https://www.ncbi.nlm.nih.gov/pubmed/20167786
http://www.ncbi.nlm.nih.gov/pubmed/19608861
http://www.ncbi.nlm.nih.gov/pubmed/16052242
http://www.ncbi.nlm.nih.gov/pubmed/28660581
http://www.ncbi.nlm.nih.gov/pubmed/28074328
http://www.ncbi.nlm.nih.gov/pubmed/21285232
http://www.ncbi.nlm.nih.gov/pubmed/28301461
http://www.ncbi.nlm.nih.gov/pubmed/28220056
http://www.ncbi.nlm.nih.gov/pubmed/26838385
http://www.ncbi.nlm.nih.gov/pubmed/23152813
http://www.ncbi.nlm.nih.gov/pubmed/21757039
http://www.ncbi.nlm.nih.gov/pubmed/25404585
http://www.ncbi.nlm.nih.gov/pubmed/28157411
http://www.ncbi.nlm.nih.gov/pubmed/20463663
http://www.ncbi.nlm.nih.gov/pubmed/22786442
http://www.ncbi.nlm.nih.gov/pubmed/22985343
http://www.ncbi.nlm.nih.gov/pubmed/25549871
http://www.ncbi.nlm.nih.gov/pubmed/11952908
http://www.ncbi.nlm.nih.gov/pubmed/30916671
http://www.ncbi.nlm.nih.gov/pubmed/21991581
http://www.ncbi.nlm.nih.gov/pubmed/25208334
http://www.ncbi.nlm.nih.gov/pubmed/26167879
http://www.ncbi.nlm.nih.gov/pubmed/24529759
http://www.ncbi.nlm.nih.gov/pubmed/26694316
http://www.ncbi.nlm.nih.gov/pubmed/21905645
http://www.ncbi.nlm.nih.gov/pubmed/22380934
http://www.ncbi.nlm.nih.gov/pubmed/23253189
http://www.ncbi.nlm.nih.gov/pubmed/22726227
http://www.ncbi.nlm.nih.gov/pubmed/26018429
http://www.ncbi.nlm.nih.gov/pubmed/28415015
https://www.ncbi.nlm.nih.gov/pubmed/26773411
http://www.ncbi.nlm.nih.gov/pubmed/24651194
http://www.ncbi.nlm.nih.gov/pubmed/24557135
http://www.ncbi.nlm.nih.gov/pubmed/24918957
http://www.ncbi.nlm.nih.gov/pubmed/27321977
http://www.ncbi.nlm.nih.gov/pubmed/24214071
http://www.ncbi.nlm.nih.gov/pubmed/17901869


Irvine GW (2019) An overview of the “-omics” fields at the forefront of next-generation personalized medicine and fundamental systems biology studies

 Volume 4: 6-6Biomed Genet Genomics, 2019              doi: 10.15761/BGG.1000147

54.	Li H, Wongkongkathep P, Van Orden SL, Ogorzalek Loo RR, Loo JA (2014) Revealing 
ligand binding sites and quantifying subunit variants of noncovalent protein complexes 
in a single native top-down FTICR MS experiment. J Am Soc Mass Spectrom 25: 2060-
2068. [Crossref] 

55.	Tsikas D, Zoerner AA, Mitschke A, Gutzki FM (2009) Nitro-fatty acids occur in 
human plasma in the picomolar range: a targeted nitro-lipidomics GC-MS/MS 
study. Lipids 44: 855-865. [Crossref] 

56.	Yang K, Han X (2011) Accurate quantification of lipid species by electrospray 
ionization mass spectrometry - Meet a key challenge in lipidomics. Metabolites 1: 21-
40. [Crossref] 

57.	Schuhmann K, Almeida R, Baumert M, Herzog R, Bornstein SR, et al. (2012) Shotgun 
lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between 
acquisition polarity modes. J Mass Spectrom 47: 96-104. [Crossref] 

58.	Breitkopf SB, Ricoult SJ, Yuan M, Xu Y, Peake DA, et al. (2017) A relative quantitative 
positive/negative ion switching method for untargeted lipidomics via high resolution 
LC-MS/MS from any biological source. Metabolomics 13: 30. [Crossref]

59.	Ellis SR, Soltwisch J, Paine MRL, Dreisewerd K, Heeren RMA (2017) Laser post-
ionisation combined with a high resolving power orbitrap mass spectrometer for 
enhanced MALDI-MS imaging of lipids.  Chem Commun (Camb)  53: 7246-7249. 
[Crossref] 

60.	Ovcacíková M, Lísa M, Cífková E, Holcapek M (2016) Retention behavior of lipids in 
reversed-phase ultrahigh-performance liquid chromatography–electrospray ionization 
mass spectrometry. J Chromatogr A 1450: 76-85.

61.	Baker PR, Armando AM, Campbell JL, Quehenberger O, Dennis EA (2014) Three-
dimensional enhanced lipidomics analysis combining UPLC, differential ion mobility 
spectrometry, and mass spectrometric separation strategies. J Lipid Res 55: 2432-2442. 
[Crossref] 

62.	 Jain M, Petzold CJ, Schelle MW, Leavell MD, Mougous JD, et al. (2007) Lipidomics 
reveals control of Mycobacterium tuberculosis virulence lipids via metabolic 
coupling. Proc Natl Acad Sci U S A 104: 5133-5138. [Crossref] 

63.	Lahiri N, Shah RR, Layre E, Young D, Ford C, et al. (2016) Rifampin Resistance 
Mutations Are Associated with Broad Chemical Remodeling of Mycobacterium 
tuberculosis. J Biol Chem 291: 14248-14256. [Crossref]

64.	Mendum TA, Wu H, Kierzek AM, Stewart GR (2015) Lipid metabolism and Type 
VII secretion systems dominate the genome scale virulence profile of Mycobacterium 
tuberculosis in human dendritic cells. BMC Genomics 16: 372. [Crossref]

65.	Fügi MA, Kaiser M, Tanner M, Schneiter R, Mäser P, et al. (2015) Match-making for 
posaconazole through systems thinking. Trends Parasitol 31: 46-51. [Crossref] 

66.	Becker JS, Matusch A, Palm C, Salber D, Morton KA, et al. (2010) Bioimaging of 
metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry 
(LA-ICP-MS) and metallomics. Metallomics 2: 104-111. [Crossref] 

67.	Vogiatzis CG, Zachariadis GA (2014) Tandem mass spectrometry in metallomics and 
the involving role of ICP-MS detection: a review. Anal Chim Acta 819: 1-14. [Crossref] 

68.	Wofford JD, Chakrabarti M, Lindahl PA (2017) Mössbauer Spectra of Mouse Hearts 
Reveal Age-dependent Changes in Mitochondrial and Ferritin Iron Levels.  J Biol 
Chem 292: 5546-5554. [Crossref] 

69.	Mullins IM, Siadaty MS, Lyman J, Scully K, Garrett CT, et al. (2006) Data mining 
and clinical data repositories: Insights from a 667,000 patient data set. Comput Biol 
Med 36: 1351-1377. [Crossref]

70.	 Jensen PB, Jensen LJ, Brunak S (2012) Mining electronic health records: towards better 
research applications and clinical care. Nat Rev Genet 13: 395-405. [Crossref] 

71.	Relling MV, Evans WE (2015) Pharmacogenomics in the clinic. Nature 526: 343-350. 
[Crossref] 

72.	 Johnson JA, Cavallari LH, Beitelshees AL, Lewis JP, Shuldiner AR, et al. (2011) 
Pharmacogenomics: Application to the Management of Cardiovascular Disease. Clin 
Pharmacol Ther 90: 519.

73.	Crews KR, Hicks JK, Pui CH, Relling MV, Evans WE (2012) Pharmacogenomics and 
individualized medicine: Translating science into practice. Clin Pharmacol Ther 92: 
467-475. [Crossref]

74.	Amsterdam EA, Wenger NK, Brindis RG, Casey DE, Ganiats TG, et al. (2014) 2014 
AHA/ACC Guideline for the Management of Patients with Non-ST-Elevation Acute 
Coronary Syndromes: a report of the American College of Cardiology/American Heart 
Association Task Force on Practice Guidelines. J Am Coll Cardiol 64: e139-e228. [Crossref]

75.	Bell RG, Sadowski JA, Matschiner JT (1972) Mechanism of action of warfarin. 
Warfarin and metabolism of vitamin K. Biochemistry 11: 1959-1961. [Crossref] 

76.	Wadelius M, Chen LY, Downes K, Ghori J, Hunt S, et al. (2005) Common VKORC1 
and GGCX polymorphisms associated with warfarin dose.  Pharmacogenomics J  5: 
262-270. [Crossref]

77.	Rau T, Heide R, Bergmann K, Wuttke H, Werner U, et al. (2002) Effect of 
the CYP2D6 genotype on metoprolol metabolism persists during long-term 
treatment. Pharmacogenetics 12: 465-472. [Crossref]

Copyright: ©2019 Irvine GW. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and source are credited.

http://www.ncbi.nlm.nih.gov/pubmed/24912433
http://www.ncbi.nlm.nih.gov/pubmed/19701657
http://www.ncbi.nlm.nih.gov/pubmed/22905337
http://www.ncbi.nlm.nih.gov/pubmed/22282095
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421409/
http://www.ncbi.nlm.nih.gov/pubmed/28573274
http://www.ncbi.nlm.nih.gov/pubmed/25225680
http://www.ncbi.nlm.nih.gov/pubmed/17360366
http://www.ncbi.nlm.nih.gov/pubmed/27226566
http://www.ncbi.nlm.nih.gov/pubmed/25956932
http://www.ncbi.nlm.nih.gov/pubmed/25486978
http://www.ncbi.nlm.nih.gov/pubmed/21069140
http://www.ncbi.nlm.nih.gov/pubmed/24636405
http://www.ncbi.nlm.nih.gov/pubmed/28202542
http://www.ncbi.nlm.nih.gov/pubmed/16375883
http://www.ncbi.nlm.nih.gov/pubmed/22549152
http://www.ncbi.nlm.nih.gov/pubmed/26469045
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589526/
https://www.ncbi.nlm.nih.gov/pubmed/25260718
http://www.ncbi.nlm.nih.gov/pubmed/5025636
http://www.ncbi.nlm.nih.gov/pubmed/15883587
http://www.ncbi.nlm.nih.gov/pubmed/12172215

	Title
	Correspondence
	Abstract 
	Key words
	Introduction
	Genomics
	Proteomics
	Metabolomics
	Lipidomics
	Metallomics
	Big Data 
	Omics in action - Pharmacogenomics 
	Conclusions
	References

