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Abstract

'The fusion of cranial skull plates in utero, or early in life, will result in an abnormal skull shape, also called craniosynostosis; from Greek origin (“o0v” and “doté0V”),
meaning a closure of the bone sutures. This condition is generally treated with surgery, but the planning and evaluation is based on subjective criteria which depend
on the experience of the craniofacial surgery team. We have developed a modelling tool to assess whether the skull shape can be recognized by a data-driven analysis
similar to a bottom-up machine learning algorithm, and we use this to quantify the outcome of surgery objectively. In this study, we evaluated five scaphocephaly,
six trigonocephaly, two brachycephaly and two plagiocephaly patients both preoperatively and postoperatively. Based on the kurtosis of the curvature distributions,
we were able to classify the different types of craniosynostosis, and to quantitatively evaluate the postoperative results as being closer to a normal skull shape. In
conclusion, we were able to design an algorithm automatically recognizing the type of craniosynostosis and quantitatively evaluating the surgical results as being closer

or further away from a normal skull.

Introduction

Craniosynostosis is a condition in which one or multiple
skull sutures fuse prematurely in infants [1], the shape of the skull
depending on which suture is closed [2]. Surgery can correct the skull
shape and relieve excess intracranial pressure [3]. Since each case is
unique, multiple surgical approaches may be possible for a given
patient. Therefore, the surgical team has a multitude of choices for a
specific patient and decides on experience. There are currently no tools
allowing a quantitative assessment of the severity of the deformation,
or the surgical results.

Our overarching goal is to develop a system capable of predicting
the outcomes of specific surgical approaches and provide a quantitative
assessment of the performance of a respective approach. In our previous
work, we have proposed a predictive model that allows craniofacial
surgeons to perform virtual surgery on a patient’s head model, and
subsequently simulate the postoperative head development of the
model to qualitatively predict the surgical outcome. In the present
paper, we describe a statistical model that can quantitatively measure
the extent of deformity in skulls with craniosynostosis, using healthy
skulls as a comparison, permitting a quantitative evaluation of a surgical
approach by comparing the results of preoperative and postoperative
skull shapes, allowing the selection of the optimal surgical approach.

Surface curvature estimation has been applied extensively in
statistical shape analysis, as it provides dependable recognition of
geometric characteristics [1]. With the introduction of 3D modelling
in the medical field, curvature estimation has been commonly used
in medical image registration [4], human structure modelling [5],
and image segmentation [6]. Here, curvature estimation was used to
classify different types of skull shape, into types of craniosynostosis.
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Methods

We used previously acquired CT-scan from infants needing them
for clinical reasons [7] with Research Ethics Board from Western
University approval, which were then modelled as explained in
Figure 1. All the results were plotted onto a two-dimensional figure
with respect to two parameters, which we believed would most
accurately depict skull shape. The first parameter is the Cranial Index
( cl = .s-i:u-u'-i -wl'dri':'

Skull length
evaluate a skull shape [8]. The second parameter is the summarization
of a curvature distribution, which characterizes the local variance of the
skull. Since the cranial index is a constant for each head scan, the key
focus of our modelling was to investigate a proper way to summarize
the curvature distribution. A set of training data, which includes
typical cases from each type of craniosynostosis, was carefully selected
to determine the best solution to differentiate curvature distributions
among the types. Within the procedures, there are three steps (indicated
by (OPH ) that could influence our final result. We proposed several
options to implement each of the steps. With more data trained, we will
adjust our simplification method @), , skull normalization @),, and
the way to explain the curvature distribution (J; , in order to make the
result patterns as obvious as possible. More details for each step will be
elaborated in the following sections.

x100), which is a traditional clinical method used to
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Figure 1. This is the flow chart of our statistical modelling, where @, , ; are be adapted
while more input data are involved in the training.

Material Preparation

CT scans of craniosynostosis patients (archived using DICOM
format) were retrospectively collected from our university hospital
database to form our experimental group. We used previously
acquired CT-scan from infants needing them for clinical reasons with
Research Ethics Board from Western University approval [9]. The
age of diagnosis of craniosynostosis ranged from shortly after birth
to one-year-old, with cases between the years 2003-2012 included in
our study. CT scans with voxel size larger than 0.4mm x 0.4mm x
2.0mm were excluded. As our gold standard, a set of CT images from
a healthy 3-week-old baby was used as the basis of comparison. For
the purpose of our study, we considered patients with scaphocephaly,
trigonocephaly, brachycephaly and plagiocephaly to be abnormal. The
final experimental group was comprised of five scaphocephaly, six
trigonocephaly, two brachycephaly and two plagiocephaly patients.

In forming the training and test data sets, only preoperative head
scans were used. Our training data consisted of two scaphocephaly
cases, one trigonocephaly case, and two brachycephaly cases, which
were carefully selected in order to best capture the shape features of the
respective types of craniosynostoses. The remaining data formed our
test data, which was used to validate our trained system.

Skull Segmentation and Surface Generation

In order to obtain a 3D representation of the skull shapes, we
segmented each set of our CT images using Amira (Amira 5 User’s
Guide - https://www.fei.com/software/amira-for-neuroscience/), a
software tool that allows visualization and manipulation of images in
three-dimensions. With the voxel labeling method in Amira, we labeled
image intensities greater than 100 Hounsfield Unit (HU) as cranial
bones. Cranial bones typically associated with surgical correction are
membranous bones, which include the left/right frontal bones, left/
right parietal bones, planum occipitale, and the flat portion of the
temporal bone. Therefore, the remaining bone structures that have
been labelled in the segmentation view were unselected. We stopped
labelling the left/right frontal bones when the left/right orbital cavity
started to be visible, and we erased the portion of temporal bones,
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in which the structure is more complicated than a curved plane. The
planum occipital (the squama portion of occipital bone) contributed to
our skull shape until the foramen magnum.

With the desired skull structures labelled, we proceeded to
construct the surface outline of the skull shape. We used the existing
weights method from the surface generation tools in Amira to extract
two-layered skull shapes with triangular meshes. One layer represented
the outer surface of the skull (in contact with skin), while the other layer
indicated the inner surface that encloses the brain. In order to reduce
the time required in further analyses, while still preserving enough
detail of the shape, a fast but constrained simplification method (the
parameter distance was set to 3) supplied in Amira was adopted.

Curvature estimation for discrete surfaces depends on the
construction of vertices and faces that compose the surface. Therefore,
we designed four methods to acquire the simplified skulls in order to
determine the best solution for the following analysis. The first method
is to continually simplify the skull until the number of faces of the
mesh ceases to decrease any further. The second method is to simplify
all the skulls to a certain number of faces (we selected 50000 faces).
The third method is to halve the total number of triangular faces by
four times for each skull. The final approach is to set the number of
vertices of the skull meshes of a specific type at the same level (+500).
Surface smoothing was applied subsequently to attenuate disturbances
resulting from simplification. For smoothing parameters, we assigned
0.6 for diffuse factor and 20 for iteration times.

Skull Volume Normalization

It is important to keep in mind the variability that exists in skull
shape between individuals. Moreover, even if two babies have similar
skull shapes, they could still have different intracranial volumes
since head circumference varies at birth. This would lead to different
curvature distributions between the individuals, where the baby with
the larger volume will tend to have a lower curvature distribution. Thus,
it is important to normalize intracranial volume between individuals.
This can be accomplished by taking two similar skulls, and uniformly
scaling one skull so that its width is the same as the other skull. This
would result in similar intracranial volumes between the two skulls,
with a similar range of curvature values. To this end, the skull width
and length must be calculated for each case, where skull length is for
the calculation of cranial index.

We developed an algorithm to semi-automatically calculate the
skull width and length, using the healthy skull of the 3-week-old infant
as a reference. The algorithm must recognize the orientation of the
skull model, so we chose to manually define the sagittal plane of the
skull. At least three points are required to define a plane, and we chose
the center of the skull, along with two other locations that could be
manually selected on the skull mesh.

The centroid is calculated with the weighted average of face

locations on the mesh:
n

d = Arenfcrp:!’u P 5 _ - P
centrold =/, Total Area = Cfeen(d: O%feen = O per ()
=0 j=0

where n is the total number of faces in a skull model, Area; ., is
area of the i face, Poss.., (1 is the centroid of this i triangular face, and
Posyer; is the position of j® vertex from a triangular face.

The second point we selected is at the bottom of the frontal suture
of our model, which should be close to the nasion (the intersection of
the frontal bone and the two nasal bones). The third point we selected
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was at the external occipital protuberance, which is a protruding point
located in the middle of the squamous part of occipital bones. With
these 3 points, the normal of the sagittal plane can be calculated with
the following equation:

Voo X Vo

n=
|""n:L ”""u:u |

Where Vpny 18 the vector pointing from centroid to the second
point, 17,5, is the vector pointing from centroid to the third point.

With the normal of the sagittal plane, we can find another line
that goes in the same direction through the centroid of the skull,
intersecting with both the left and right side of the skull. We took the
distance between these two intersected points as the skull width. To
calculate the skull length, we first explored the farthest position of the
skull mesh that is within the sagittal plane from the center point. We
determined whether a vertex is in the sagittal plane with the following
equation:

n - v

- =T

lv;l

Where Vei is the vector from the centroid of skull to the center of i
face, and the value of the tolerance is 0.0001. The second investigation
followed is to find another vertex in this sagittal plane that has the
longest distance with previous location. The distance between these
two locations is defined as the skull length.

Curvature Estimation for Discrete Surface Meshes

We selected a curvature estimation algorithm developed by Dong
and Wang (2005) in our evaluating system [7]. Consider a surface mesh
G = (V, F), where V represents a set of vertices in the surface and F
defines the triangular faces that link those vertices together. For each
triangular face [, it is easy to obtain the unit normal vector I , .
To find the tangent plane of a vertex in the mesh, Dong and Wang
took advantage of the faces in the vicinity of this vertex, which are one-
ring faces around the vertex [7]. Let V C V be a vertex on the mesh G,
and fl denotes faces in the one-ring neighbourhood of v. The normal
vertex I of vertex V can be averaged by weighted normal vectors of
faces that are in the one-ring neighbourhood of v:

m Il'l m
n, = Z wing [ Zw!- ng
i=1 ! i=1
1
B e =

Where 1 , is the unit normal vector of face fiand C . is the
coordinate of the centroid of face fl . The method to define the weight
of face [, was proposed by Chen and Wu (2004) [16].

For each vertexV on a surface mesh, there are a series of vertices
v; (j = L.2.3..m) surrounding it in the area of one-ring neighbourhood.
Let assume the distance between v and V is small enough, and thus

we can obtain:
{v; —vm, —ny
b v; b
""n{tj} = - z
v vl
Where t . indicate the tangent vector of the curve that forms ¥i
and V. We can interpret this tangent vector tj as the projection of

vector (Vj —V) on the tangent plane of V. Therefore,
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{'l-'J-' —v) - n,{v; —v.n,)

= [ {'l-'J-' —v) - n,{v; — v, n,)|

Dongand Wang introduced theleast square method from Chenand
Schmitt to estimate principal curvatures [7,10]. It is known that normal
curvatures of a vertex V has such relation x, = i, cos’ @+« sin” @
according to Euler’s equation, where K| and K, are maximum and
minimum curvatures at V, and @ is the angle between K| and K
. Since the direction of k; and g, are unknown, Dong and Wang
proposed to select an arbitrary coordinate system él,éz} on the
tangent plane [7]. Let 00 denote the angle between the direction of K|
and €;,and @ denote the angle between the direction of t, and él .
Therefore, the Euler formula can be converted to:

Ri’!{ti'} = kycos*(8; — 6y) + ky sin®(6; — 8;)
=a cns:{ﬁ‘i-] + b cos( 6;) sin(8;) + ¢ sin:{ﬁ‘i-]

Where the constants a, b, ¢ can be represented with respect to K|
,» K, and 90:

a=k, cos’q,+k,sin’q,
b=2(k, [k, )cos(q,)sin(q,)

_ ) 2
c=k sin" g +k,cos” g,

[ O O

If we use the maximum normal curvature K, among
ATTA

K, (tj )(] =1,.., m) to build the coordinated system y€,€,
, where the direction of K 18 €, it is easy to obtain d = Koo -
Therefore, b and c can be estimated as:

b= 0300y, — W30, — 0),0y; — 0, W5

2 2
o,,0,, —(@,,) ®,0,, —(@),)

Where:

@, =Y cos’(0))sin’(0,),w,, = ) cos(d,)sin’ ()

=1 m =1
- =VYin?
Wy, =0,,0,, = Zsm @)
j=1

o = i (k,(t,)—a cos’ (6,))cos(6,)sin(8,)

W,y = i(/{n (t,)—acos’(6,))sin’(0,)

Dong and Wang also provided the relationship between the
constants and curvatures:

K, =Kk, =ac—b*/4,x, =(x,+K,)/2=(a+c)/2

_ 2
K, =Ky +K, —Kg

Where K, G is the Gaussian curvature, K y 1s the Mean curvature,
and K , are the Principal curvatures.

In summary, the above algorithm for calculating the Principal
curvatures of a vertex utilized one-ring neighbourhood of faces
and vertices. Alternatively, it is implementable to involve k-ring
neighbourhood in this algorithm if necessary. In our work, we choose
two-ring neighbourhood, trying to smooth local noises during mesh
simplification meanwhile to keep A7 (distance between V and ¥i ) as
small as possible for accuracy. In addition, we would only take use of
the maximum curvature X in our evaluation tool.
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Curvature Distribution for One Skull Shape

A curvature value obtained from the aforementioned algorithm is
only a representation for one vertex on a surface mesh, since it only
depicts local changes. Each skull mesh is composed of a large amount
of vertices, and we therefore obtained a series of curvature values for
each skull shape.

We used curvature distribution to render the set of curvature values
on a 2D figure, where the x-axis represents curvature values and the
y-axis indicates the percentage of vertices on a mesh that falls onto the
same curvature value. Smooth objects more spherical in shape should
display a narrow and tall distribution, whereas objects ellipsoidal
in shape should have a shorter but wider distribution. We expected
that similar skull shapes on the same scale should display similar
distributions, and that we would be able to distinguish the different
types of skull shapes by their patterns of curvature distribution.
However, for discretized manifolds with noises, it is hard to obtain
exactly same curvature values for two vertices. Therefore, we need to
divide the range of this set of vertices into segments.

Since the shape of a normalized skull is more ellipsoid in shape,
the range of curvatures can be decided. We set the range of curvature
values to be (0, 0.1), then further divided this range into small bins,
each of which should have the same value (e.g. bin=0.001 or 0.005). As
a result, each bin represents a smaller range of curvature values within
(0, 0.1). The curvature value of a vertex that falls into any bin should
contribute to the y-axis (percentage of vertices) of the according bin.

Statistical Modelling

In order to study the pattern of different skull shapes, we designed
the statistical model to use two parameters as contributions. The first
parameter used was the cranial index, which roughly describes the
scale of the skull volume. The second parameter was the curvature
distribution of a skull. However, curvature distribution is a curve that
represents how curvature values of a mesh behave within a certain
range, which means that the pattern of curvature distribution will vary
depending on different types of shape. Thus, a method of summarizing
the pattern of curvature distribution into one variable was needed.

In statistics, moment is a common way to quantify the shape
of a distribution curve or a set of points. There are four significant
moments: the mean (Ist moment), variance (2" moment), skewness
(3" moment) and kurtosis (4 moment) respectively.

The kurtosis is defined as normalized fourth moment, and measures
the weight of the tail for a distribution:

o, 2
W) Q-9

Where [, is the variance and [, is the fourth moment. If the
value of k is 3, the distribution is a normal distribution. If the value
of k is greater than 3, the distribution tends to have long and fat tails,
whereas values lower than 3 will have distributions with short tails.
Considering the geometrical meanings of significant moments, we
decided to utilize kurtosis to measure the curvature distribution.

Results
System Development with Training Data

In this section, we will demonstrate how mesh simplifications,
skull normalization and the bin values of curvature distribution affect
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the performance of our system. For each feature, we will represent the
results with all possible approaches we implemented, while the other
features were fixed.

Mesh Simplifications

Figures 2 to 5 represent the measurements of skull shapes with four
different approaches of mesh simplification. All other parameters were
kept constant. The iteration value for surface smoothness was set to
20, all the skulls were normalized, and the bin value was 0.005. We
represented a skull shape with both cranial index and kurtosis (in log)
of its curvature distribution.

Figure 2 indicates various skull shapes, which were all composed
of 50000 triangular faces. The black dot is from a healthy baby, the
two green dots indicate scaphocephaly cases, the blue dots represent
two brachycephaly cases, and the red dot is from a trigonocephaly
patient. From the x-axis, we can see that scaphocephaly patients have
lower values than the other cases, the trigonocephaly skull was closer
to a healthy shape, and the values of the two brachycephaly cases
were relatively higher than the others. While we expected that the
distribution of kurtosis values could differentiate the different types of
craniosynostosis, this was not the case. One brachycephaly patient was

Meshes with 50000 Faces
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Figure 2. Results from training data, which the number of faces of each surface mesh is
50000. The black dot is the normal skull, the green dots are the scaphocephaly, the red dots
are the trigonocephaly, the blue dots are the anterior plagiocephaly.
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Figure 3. Quantified results with the second mesh simplification method, which reduces
the number of faces to the limitations. The black dot is the normal skull, the green dots
are the scaphocephaly, the red dots are the trigonocephaly, the blue dots are the anterior
plagiocephaly.
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Halve the Faces Four Times
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Figure 4. Kurtosis vs cranial index with different skull shapes, which number of faces were
halved four times. The black dot is the normal skull, the green dots are the scaphocephaly,
the red dots are the trigonocephaly, the blue dots are the anterior plagiocephaly.
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Figure 5. Kurtosis vs cranial index with different skull shapes, which number of vertices
were at the same level. The black dot is the normal skull, the green dots are the scaphocephaly,
the red dots are the trigonocephaly, the blue dots are the anterior plagiocephaly.

at the same level as the control patient, and one scaphocephaly case had
the highest value while the other scaphocephaly case had the lowest.

Figure 3 represents skull meshes that were simplified until the
number of faces ceased to change. While x-axis values were the same as
previous, the values of kurtosis were quite different. The kurtosis of the
normal skull was distinct from pathological cases. However, one value of
scaphocephaly was higher than the trigonocephaly and brachycephaly
patients, while the kurtosis value of the other scaphocephaly case was
the lowest. Therefore, this method was also unable to classify the types
of skull shapes.

Figure 4 displays skull meshes where the number of faces
was all halved by four times. Figure 5 shows the skull shapes with
similar numbers of vertices. Under both simplification methods, the
different types of craniosynostosis were able to be differentiated in
similar patterns. The healthy skull had the lowest kurtosis value, the
trigonocephaly skull had a greater value, the brachycephaly patients
had even greater value, and the scaphocephaly cases had the highest
value. The values of scaphocephaly cases deviated furthest from the
control case, which corresponds to the fact that scaphocephaly skulls
are the most deformed. In addition, the value of the trigonocephaly
case was closest to the control case while the shape of this type of skull
was similar to normal shape only except the forehead and the cranial
index was in the same range as normal.
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Since both methods were effective, we decided to combine them.
First, for all the skull shapes, the number of faces was halved four
times. On the basis of this step, for each type of craniosynostosis, we
selected the skull that had the smallest number of vertices, and tuned
the number of vertices of the other skulls to the same level, allowing
+500 difference depending on the complexity of the skull shape.

Skull Normalization

With a selected mesh simplification method, we tested whether
skull normalization was necessary or not. With the optimized
simplification method and bin = 0.005, we inputted the training data
into our system without normalization, as displayed in Figure 6. The
kurtosis value of trigonocephaly was higher than the values of the
brachycephaly cases, and the value of one scaphocephaly case was
at the same level as the trigonocephaly case. This demonstrates that
without skull normalization, the distinct shapes of scaphocephaly and
trigonocephaly cannot be differentiated. In addition, the kurtosis value
of trigonocephaly was unexpectedly greater than brachycephaly. As a
result, we decided to continue with skull normalization in the following
experiments.

The Bin Values

Next, we explored the optimal bin value that would best classify
the types of skull shapes. We tested bin values from 0 to 0.01, in 0.0005
increments.

The results of 0.0005, 0.001, and 0.01 bin values are displayed in
Figures 7 to 9. At these bin values, the different types of craniosynostosis
could not be differentiated from normal (the values of brachycephaly
patients all overlapped with the values of trigonocephaly cases).

Figures 10 to 13 display the results with other bin values (0.004,
0.005, 0.006 and 0.008). With these values, our system was able to
demonstrate the types of craniosynostosis well, from which we could
see that both Figure 11 and 13 best differentiate the craniosynostosis
types, but indicated with different patterns, where the kurtosis values
of brachycephaly cases were higher than the trigonocephaly case in
Figure 11, which pattern was inverted in Figure 13. Since we hope that
with a closer cranial index to normal case, the kurtosis value should be
closer to normal. As a result, we preferred bin = 0.005 to be the most
appropriate value.

Results with Unormalized Skulls
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Figure 6. Kurtosis vs cranial index with different skull shapes without normalization. The
black dot is the normal skull, the green dots are the scaphocephaly, the red dots are the
trigonocephaly, the blue dots are the anterior plagiocephaly.
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Figure 9. The measurements of skull shapes with bin=0.01.
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Figure 10. The measurements of skull shapes with bin=0.004.
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Figure 11. The measurements of skull shapes with bin=0.005.
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Figure 12. The measurements of skull shapes with bin=0.006.
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Kurtosis vs Crnaial Index bin=0.008
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Figure 13. The measurements of skull shapes with bin=0.008.

System Testing

We added test data into our system to investigate its accuracy. As
a comparison, we also provided the results with bin=0.008, which was
previously a good indication between different types of craniosynostosis
with our training data (as seen in previous section). In Figure 14 and
15, we added three scaphocephaly patients and four trigonocephaly
cases, with bin values 0.005 and 0.008 respectively. As seen in Figure
15 (bin=0.008), the system was able to accurately characterize the types
of craniosynostosis except for two scaphocephaly cases, which were
overlapped with the values of trigonocephaly cases. Again, although the
trigonocephaly cases obtained very similar kurtosis values, they were
still unexpected higher than brachycephaly cases. A bin value of 0.005
was confirmed to be optimal for our evaluating system since the skull
shapes dispersed in the figure in a way such that the further a cranial
index deviated from the control case, the further the corresponding
kurtosis value deviated from the value of normal.

With the confirmation of our evaluating system with bin=0.005,
we further added one atypical trigonocephaly and two anterior-
plagiocephaly cases (Figure 16). We also provided an aerial view
of an atypical trigonocephaly skull in Figure 17, next to a typical
trigonocephaly skull. A typical trigonocephaly patient should have a
triangular forehead (Figure 17), whereas the forehead of the skull at the
right side looks normal. We can only see the deformity from the side
view of this skull in Figure 18, and neurosurgeon diagnosed this skull as
a mild trigonocephaly. Looking back to Figure 16, the cranial index of
this patient was 0.812, which was considered in the normal range, and
the kurtosis value was lower than the values of typical trigonocephaly
cases. Therefore, our evaluating system indicated this case as a mild
trigonocephaly case, which matched the truth.

The purple dot, which was close to one of the brachycephaly skull
shapes (blue dots), was denoted as “plagiocephaly case one”. The right
side of Figure 19 showed the top view of this skull shape, whereas the
left side was from the brachycephaly patient (blue dot) that was very
close to this plagiocephaly case in Figure 16. We can see from Figure
19 that both skulls had similar shapes, which were both flat and short.
In addition, these two skulls had similar cranial index values indicated
in Figure 16, and is therefore their kurtosis values were anticipated to
be close.

The second plagiocephaly patient (purple dot) fell into the
trigonocephaly region, surrounded by red dots in Figure 16. We
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provided the top view of this skull shape in the right side of Figure
20, and the top view of the first plagiocephaly skull shape at the left
side. As comparison, we can see the level of deformity of this second
plagiocephaly skull was much less severe than the first one, and the
value of cranial index was 0.83 that was close to our normal case. As a
result, it is predictable that the kurtosis value of this patient was lower
than the first plagiocephaly case and much closer to the normal patient

Kurtosis vs Cranial Index bin=0.005
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Figure 14. The measurements of skull shapes from test data with bin=0.005.
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Figure 15. The measurements of skull shapes from test data with bin=0.008.
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Figure 16. Best results with a bin value of 0.005. The black dot is the normal skull, the
green dots are the scaphocephaly, the red dots are the trigonocephaly (the one with the
arrow is a bit less typical when observed clinically by an expert), the blue dots are the
anterior plagiocephaly.
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Figure 17. Top view of trigonocephaly skulls, the left one is a typical shape and the right
one is the untypical case shown with an arrow in Figure 16. While the metopic suture is
closed, the skull is less “pointy”.

Figure 18. Side view of trigonocephaly skulls, the left one is a typical shape and the right
one is the untypical case shown with an arrow in Figure 16. While only the metopic suture
is closed, the skull is elongated and the parietal bone is higher than expected.

Figure 19. Comparison of skull shapes from top view between a brachycephaly (left:
bilateral coronal synostosis — also seen as bilateral anterior plagiocephaly) and a left
plagiocephaly patient (right image).

Discussion

Curvature is an intrinsic feature that describes the local shape of
a surface, and therefore, calculating the curvature values of a skull is
the key procedure in our evaluation system. Surface mesh, which is
composed of triangular faces and vertices, was adopted to generate
each skull, and each vertex has a curvature value according to its
neighbourhood of vertices and faces. We used a statistical method
called kurtosis to summarize all the curvature values of a skull mesh
into one number, which can be outputted with the cranial index of a
skull. There were several steps in our algorithms, which could affect the
curvature values, such as the method for simplifying the skull shape,
the size of the skull shape, and the method for representing a curvature
distribution. We selected several skull shapes from different types of
craniosynostosis as training data, which were repeatedly inputted into
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our evaluating system with different algorithms in order to determine
the best way to classify the different types of shapes.

Cohen and Maclean categorized skull shapes into four types
on the basis of CI: dolichocephaly (CI < 75.9), mesocephaly (CI
between 76.0 and 80.9), brachycephaly (CI between 81.0 to 85.4),
and hyper-brachycephaly (CI > 85.5) [11]. A typical skull shape for
scaphocephaly would most likely be dolichocephaly, and the CI of a
typical brachycephaly head ought to be higher than 85.5. This validated
our algorithm to calculate CI from Figure 21, where the CI’s of all
the scaphocephaly cases were lower than 0.7, and the CI’s of the two
brachycephaly cases were higher than 0.9.

On the other hand, not all shapes categorized as dolichocephaly,
brachycephaly, or hyper-brachycephaly are pathological. In a previous
study, 35 Polish children (aged 4-6 months) and 53 Polish children
(aged 7-12 months) diagnosed as having normal head shapes were
found to have an average CI of 81.45+7.98 and 83.15+7.98, respectively
[8]. According to the study, although mesocephaly is the dominant
head shape among children with normal head development, other head
types present as well, especially brachycephaly [8]. Similar results were
also found in a cohort of infants from the United States [12]. Wolanski
et al. [13] found that the average CI for infants between the age of 0 to
6 months is 83.75£7.25, whereas Dekaban concluded the average CI
for infants within 12 months is 78.36 [13,15]. In addition, some skull
shapes may exhibit a combination of several different features, such as
a trigonocephaly patient with brachycephaly head shape (the red dot in

Figure 20. Comparison of skull shapes from top view, between 2 left anterior plagiocephaly
to show how variations can occur even with the same suture being closed.

~7>~_  Kurtosis vs Cranial Index bin=0.005

[0 ® o\ :
f\ » M\ Case 1, 1 1
\| @ \\ 1 1 i Hyper- |
-300% \ brachycephaly
\\ [ ] i 1 1 1
5 / / Brachycephaly
sl a2 s 1 i 1 o
- 1 b I et 5
Bl Mesocephal 7
8 l'”wmvamyl 1 > o L )
£ 340" polichocephaly —F =~ i1
= 1 1 1 ////7 N
X I/,/”>7I__;:?‘\\ !/ e /) 7
360 - 7 S e g = |
i 7 4 1 7 1 7 i
( [ ] S
¥, ! b 4 ®o! o
380 \L<—”‘_1‘\‘=\T",// .
PR e o TN
] i~ I,
400 . LY L P . .
0.6 0.65 0.7 G 0.8 ‘D.gb/ 0.9 0.95 1 1.05

Figure 21. An indication of expected areas of shape results for each type of skull shapes.
Dolichocephaly, mesocephaly, brachycephaly and hyper-brachycephaly were separated by
yellow-vertical-dashed lines.
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Figure 21 with CI of 0.88). As a consequence, for the CI values for each
type of skull shape, we would expect an area on our 2D output figure
distributed by diverse cases of one type of craniosynostosis, which
reasonably overlaps with areas of other types (dashed ellipses in Figure
21). With more data added, we expect each area will be enlarged.

Although we only had one normal case in our database, this normal
head shape was a mesocephaly. As the middle point among all the
CI values, we considered this normal head to be our standard head
shape. If any pathological skull shape was restored back to this shape,
we regarded the associated surgery to be effective for this patient. We
would expect that other normal shapes would be distributed within the
black dashed circle shown in Figure 21.

The kurtosis values in our research were interpreted as the
summary of a head’s local shapes, and the extent of deformity of a skull
shape. Generally, we assumed that the further the CI value deviated
from our normal case, the greater the extent of deformity in the skull.
The results in Figure 21 validated our assumption, and also matches
research from Ruiz-Correa et al. [14]. In their study, which measured
the severity of scaphocephaly heads, the CI was found to have a positive
linear correlation with their severity measurement of scaphocephaly
head shapes [14]. Therefore, the overlapped regions could also be
explained by the fact that some skull shapes might be very similar even
if they belong to different types of craniosynostosis, or the same level of
deformity but with different head shape.

However, the kurtosis values could also fluctuate due to certain
factors. Consider two scaphocephaly cases as an example, which are
indicated by case 1 and 2 in Figure 21. The CI’s of these two cases were
very close, but the kurtosis values had a gap in between. We provided
the curvature distributions of these two skulls in Figure 22 with a color
map of curvature, showing from blue as 0 to red as higher than 0.1.
From an aerial view, case 1 had a short and wide forehead, and the skull
width narrowed towards the posterior end, whereas the width of case
2 was essentially constant across the skull. Therefore, the difference
in local shapes could result in the discrepancy of kurtosis values,
even though the CI values are the same. In addition, case 1 had more
high values of curvature (indicated by more yellow and red regions)
than case 2, especially along the edges of open areas and along the
midline. We excluded curvature values higher than 0.1 from our shape
quantification algorithm. As a result, less curvature values in case 1
contributed to the skull shape evaluation, which can explain the higher
than expected kurtosis values.

Figure 22. A comparison of local shapes between two scaphocephaly patients (right is case
1 and left is case 2), indicated by color map of curvature values showing from low to high
(blue as 0 to red).
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As demonstrated in previous studies [17,18]. Our system can be
considered stable if the inputted skulls have small open areas or relative
short edges, though this cannot be ensured in many cases - especially
for postoperative skulls.

Future studies should attempt to determine a method to smoothly
fill the open area of a skull in order to render the result as accurately
as possible. Another step would be to increase the amount of clinical
data used as training data to further tune our evaluating algorithms,
resulting we believe in an expansion of the region in the graph for each
craniosynostosis type. We also hope to be able to effectively apply
this algorithm to evaluate surgeries by comparing preoperative and
postoperative skull shapes to normal cases, and determine how far the
postoperative skull shape shifted towards the ideal normal shape.

Conclusion

We developed an algorithm able to quantify skull shape, allowing
craniofacial surgical teams to not only qualitatively evaluate an
abnormal skull, but also to quantitatively evaluate the degree of
postoperative improvement compared to the preoperative skull shape.

We evaluated the extent of skull deformity for each common type
of craniosynostosis in a way where the further a cranial index value
deviates from the control patient, the further its kurtosis deviates
from the normal. From another perspective, with similar cranial index
and the same type of shape, the kurtosis values are varied by the local
shapes and the length of skull edges (caused by open areas). With this
evaluating algorithm, we can evaluate a craniosynostosis surgery by
inputting the skull measurements of a patient from different periods
in that patient’s life. Ideally, an effective surgery should produce
postoperative skull shapes with corresponding kurtosis values and/or
cranial indices that shift closer and closer to the gold standard normal
shape.
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