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Abstract
The fusion of cranial skull plates in utero, or early in life, will result in an abnormal skull shape, also called craniosynostosis; from Greek origin (“σύν” and “ὀστέον”), 
meaning a closure of the bone sutures. This condition is generally treated with surgery, but the planning and evaluation is based on subjective criteria which depend 
on the experience of the craniofacial surgery team. We have developed a modelling tool to assess whether the skull shape can be recognized by a data-driven analysis 
similar to a bottom-up machine learning algorithm, and we use this to quantify the outcome of surgery objectively. In this study, we evaluated five scaphocephaly, 
six trigonocephaly, two brachycephaly and two plagiocephaly patients both preoperatively and postoperatively. Based on the kurtosis of the curvature distributions, 
we were able to classify the different types of craniosynostosis, and to quantitatively evaluate the postoperative results as being closer to a normal skull shape. In 
conclusion, we were able to design an algorithm automatically recognizing the type of craniosynostosis and quantitatively evaluating the surgical results as being closer 
or further away from a normal skull.
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Introduction
Craniosynostosis is a condition in which one or multiple 

skull sutures fuse prematurely in infants [1], the shape of the skull 
depending on which suture is closed [2]. Surgery can correct the skull 
shape and relieve excess intracranial pressure [3]. Since each case is 
unique, multiple surgical approaches may be possible for a given 
patient. Therefore, the surgical team has a multitude of choices for a 
specific patient and decides on experience. There are currently no tools 
allowing a quantitative assessment of the severity of the deformation, 
or the surgical results. 

Our overarching goal is to develop a system capable of predicting 
the outcomes of specific surgical approaches and provide a quantitative 
assessment of the performance of a respective approach. In our previous 
work, we have proposed a predictive model that allows craniofacial 
surgeons to perform virtual surgery on a patient’s head model, and 
subsequently simulate the postoperative head development of the 
model to qualitatively predict the surgical outcome. In the present 
paper, we describe a statistical model that can quantitatively measure 
the extent of deformity in skulls with craniosynostosis, using healthy 
skulls as a comparison, permitting a quantitative evaluation of a surgical 
approach by comparing the results of preoperative and postoperative 
skull shapes, allowing the selection of the optimal surgical approach.

Surface curvature estimation has been applied extensively in 
statistical shape analysis, as it provides dependable recognition of 
geometric characteristics [1]. With the introduction of 3D modelling 
in the medical field, curvature estimation has been commonly used 
in medical image registration [4], human structure modelling [5], 
and image segmentation [6]. Here, curvature estimation was used to 
classify different types of skull shape, into types of craniosynostosis.  

Methods
We used previously acquired CT-scan from infants needing them 

for clinical reasons [7] with Research Ethics Board from Western 
University approval, which were then modelled as explained in 
Figure 1. All the results were plotted onto a two-dimensional figure 
with respect to two parameters, which we believed would most 
accurately depict skull shape. The first parameter is the Cranial Index 
( ), which is a traditional clinical method used to 
evaluate a skull shape [8]. The second parameter is the summarization 
of a curvature distribution, which characterizes the local variance of the 
skull. Since the cranial index is a constant for each head scan, the key 
focus of our modelling was to investigate a proper way to summarize 
the curvature distribution. A set of training data, which includes 
typical cases from each type of craniosynostosis, was carefully selected 
to determine the best solution to differentiate curvature distributions 
among the types. Within the procedures, there are three steps (indicated 
by 1,2,3ω ) that could influence our final result. We proposed several 
options to implement each of the steps. With more data trained, we will 
adjust our simplification method 1ω , skull normalization 2ω , and 
the way to explain the curvature distribution 3ω , in order to make the 
result patterns as obvious as possible. More details for each step will be 
elaborated in the following sections. 
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in which the structure is more complicated than a curved plane. The 
planum occipital (the squama portion of occipital bone) contributed to 
our skull shape until the foramen magnum. 

With the desired skull structures labelled, we proceeded to 
construct the surface outline of the skull shape. We used the existing 
weights method from the surface generation tools in Amira to extract 
two-layered skull shapes with triangular meshes. One layer represented 
the outer surface of the skull (in contact with skin), while the other layer 
indicated the inner surface that encloses the brain. In order to reduce 
the time required in further analyses, while still preserving enough 
detail of the shape, a fast but constrained simplification method (the 
parameter distance was set to 3) supplied in Amira was adopted. 

Curvature estimation for discrete surfaces depends on the 
construction of vertices and faces that compose the surface. Therefore, 
we designed four methods to acquire the simplified skulls in order to 
determine the best solution for the following analysis. The first method 
is to continually simplify the skull until the number of faces of the 
mesh ceases to decrease any further. The second method is to simplify 
all the skulls to a certain number of faces (we selected 50000 faces). 
The third method is to halve the total number of triangular faces by 
four times for each skull. The final approach is to set the number of 
vertices of the skull meshes of a specific type at the same level (±500). 
Surface smoothing was applied subsequently to attenuate disturbances 
resulting from simplification. For smoothing parameters, we assigned 
0.6 for diffuse factor and 20 for iteration times.

Skull Volume Normalization

It is important to keep in mind the variability that exists in skull 
shape between individuals. Moreover, even if two babies have similar 
skull shapes, they could still have different intracranial volumes 
since head circumference varies at birth. This would lead to different 
curvature distributions between the individuals, where the baby with 
the larger volume will tend to have a lower curvature distribution. Thus, 
it is important to normalize intracranial volume between individuals. 
This can be accomplished by taking two similar skulls, and uniformly 
scaling one skull so that its width is the same as the other skull. This 
would result in similar intracranial volumes between the two skulls, 
with a similar range of curvature values. To this end, the skull width 
and length must be calculated for each case, where skull length is for 
the calculation of cranial index.

We developed an algorithm to semi-automatically calculate the 
skull width and length, using the healthy skull of the 3-week-old infant 
as a reference. The algorithm must recognize the orientation of the 
skull model, so we chose to manually define the sagittal plane of the 
skull. At least three points are required to define a plane, and we chose 
the center of the skull, along with two other locations that could be 
manually selected on the skull mesh. 

The centroid is calculated with the weighted average of face 
locations on the mesh: 

where n is the total number of faces in a skull model,  is 
area of the ith face,  is the centroid of this ith triangular face, and 

 is the position of jth vertex from a triangular face. 

The second point we selected is at the bottom of the frontal suture 
of our model, which should be close to the nasion (the intersection of 
the frontal bone and the two nasal bones). The third point we selected 

Figure 1. This is the flow chart of our statistical modelling, where 1,2,3ω  are be adapted 
while more input data are involved in the training.

Material Preparation
CT scans of craniosynostosis patients (archived using DICOM 

format) were retrospectively collected from our university hospital 
database to form our experimental group. We used previously 
acquired CT-scan from infants needing them for clinical reasons with 
Research Ethics Board from Western University approval [9]. The 
age of diagnosis of craniosynostosis ranged from shortly after birth 
to one-year-old, with cases between the years 2003–2012 included in 
our study. CT scans with voxel size larger than 0.4mm × 0.4mm × 
2.0mm were excluded. As our gold standard, a set of CT images from 
a healthy 3-week-old baby was used as the basis of comparison. For 
the purpose of our study, we considered patients with scaphocephaly, 
trigonocephaly, brachycephaly and plagiocephaly to be abnormal. The 
final experimental group was comprised of five scaphocephaly, six 
trigonocephaly, two brachycephaly and two plagiocephaly patients. 

In forming the training and test data sets, only preoperative head 
scans were used. Our training data consisted of two scaphocephaly 
cases, one trigonocephaly case, and two brachycephaly cases, which 
were carefully selected in order to best capture the shape features of the 
respective types of craniosynostoses. The remaining data formed our 
test data, which was used to validate our trained system.

Skull Segmentation and Surface Generation

In order to obtain a 3D representation of the skull shapes, we 
segmented each set of our CT images using Amira (Amira 5 User’s 
Guide - https://www.fei.com/software/amira-for-neuroscience/), a 
software tool that allows visualization and manipulation of images in 
three-dimensions. With the voxel labeling method in Amira, we labeled 
image intensities greater than 100 Hounsfield Unit (HU) as cranial 
bones. Cranial bones typically associated with surgical correction are 
membranous bones, which include the left/right frontal bones, left/
right parietal bones, planum occipitale, and the flat portion of the 
temporal bone. Therefore, the remaining bone structures that have 
been labelled in the segmentation view were unselected. We stopped 
labelling the left/right frontal bones when the left/right orbital cavity 
started to be visible, and we erased the portion of temporal bones, 
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was at the external occipital protuberance, which is a protruding point 
located in the middle of the squamous part of occipital bones. With 
these 3 points, the normal of the sagittal plane can be calculated with 
the following equation:

Where  is the vector pointing from centroid to the second 
point,  is the vector pointing from centroid to the third point. 

With the normal of the sagittal plane, we can find another line 
that goes in the same direction through the centroid of the skull, 
intersecting with both the left and right side of the skull. We took the 
distance between these two intersected points as the skull width. To 
calculate the skull length, we first explored the farthest position of the 
skull mesh that is within the sagittal plane from the center point.  We 
determined whether a vertex is in the sagittal plane with the following 
equation:

Where  is the vector from the centroid of skull to the center of ith 
face, and the value of the tolerance is 0.0001. The second investigation 
followed is to find another vertex in this sagittal plane that has the 
longest distance with previous location. The distance between these 
two locations is defined as the skull length. 

Curvature Estimation for Discrete Surface Meshes

We selected a curvature estimation algorithm developed by Dong 
and Wang (2005) in our evaluating system [7]. Consider a surface mesh 
G = (V, F), where V represents a set of vertices in the surface and F 
defines the triangular faces that link those vertices together. For each 
triangular face f , it is easy to obtain the unit normal vector 

if
n . 

To find the tangent plane of a vertex in the mesh, Dong and Wang  
took advantage of the faces in the vicinity of this vertex, which are one-
ring faces around the vertex [7]. Let v V⊂ be a vertex on the mesh G, 
and if denotes faces in the one-ring neighbourhood of v. The normal 
vertex vn  of vertex v  can be averaged by weighted normal vectors of 
faces that are in the one-ring neighbourhood of v :

Where 
if

n  is the unit normal vector of face if and 
if

c is the 
coordinate of the centroid of face if . The method to define the weight 
of face if  was proposed by Chen and Wu (2004) [16].

For each vertex v  on a surface mesh, there are a series of vertices 
 surrounding it in the area of one-ring neighbourhood. 

Let assume the distance between  and v  is small enough, and thus 
we can obtain:

Where jt  indicate the tangent vector of the curve that forms  
and v . We can interpret this tangent vector jt  as the projection of 
vector ( )jv v−  on the tangent plane of v . Therefore, 

Dong and Wang introduced the least square method from Chen and 
Schmitt  to estimate principal curvatures [7,10]. It is known that normal 
curvatures of a vertex v  has such relation 2 2

1 2cos sinκ κ θ κ θ= +n  
according to Euler’s equation, where 1κ  and 2κ  are maximum and 
minimum curvatures at v , and θ  is the angle between 1κ  and κn
. Since the direction of 1κ  and 2κ  are unknown, Dong and Wang  
proposed to select an arbitrary coordinate system { }1 2ˆ ˆ,e e  on the 
tangent plane [7]. Let 0θ  denote the angle between the direction of 1κ  
and 1̂e , and jθ  denote the angle between the direction of jt  and 1̂e . 
Therefore, the Euler formula can be converted to:

 

Where the constants a, b, c can be represented with respect to 1κ
, 2κ  and 0θ :

a = k1 cos2 q0 +k 2 sin2 q0

b = 2(k2 -k1)cos(q0 )sin(q0 )

c = k1 sin2 q0 +k 2 cos2 q0
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If we use the maximum normal curvature maxκ  among 
( )( 1,..., )j j mκ =n t to build the coordinated system { }1 2ˆ ˆ,e e

, where the direction of maxκ  is 1̂e , it is easy to obtain maxa κ= . 
Therefore, b and c can be estimated as:
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Dong and Wang also provided the relationship between the 
constants and curvatures:

2
1 2 1 2/ 4, ( ) / 2 ( ) / 2G Hac b a cκ κ κ κ κ κ= = − = + = +

2
1,2 H H Gκ κ κ κ= + −

Where Gκ  is the Gaussian curvature, Hκ  is the Mean curvature, 
and 1,2κ  are the Principal curvatures. 

In summary, the above algorithm for calculating the Principal 
curvatures of a vertex utilized one-ring neighbourhood of faces 
and vertices. Alternatively, it is implementable to involve k-ring 
neighbourhood in this algorithm if necessary. In our work, we choose 
two-ring neighbourhood, trying to smooth local noises during mesh 
simplification meanwhile to keep r∆  (distance between v  and  ) as 
small as possible for accuracy. In addition, we would only take use of 
the maximum curvature 1κ  in our evaluation tool.
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Curvature Distribution for One Skull Shape

A curvature value obtained from the aforementioned algorithm is 
only a representation for one vertex on a surface mesh, since it only 
depicts local changes. Each skull mesh is composed of a large amount 
of vertices, and we therefore obtained a series of curvature values for 
each skull shape. 

We used curvature distribution to render the set of curvature values 
on a 2D figure, where the x-axis represents curvature values and the 
y-axis indicates the percentage of vertices on a mesh that falls onto the 
same curvature value. Smooth objects more spherical in shape should 
display a narrow and tall distribution, whereas objects ellipsoidal 
in shape should have a shorter but wider distribution. We expected 
that similar skull shapes on the same scale should display similar 
distributions, and that we would be able to distinguish the different 
types of skull shapes by their patterns of curvature distribution. 
However, for discretized manifolds with noises, it is hard to obtain 
exactly same curvature values for two vertices. Therefore, we need to 
divide the range of this set of vertices into segments. 

Since the shape of a normalized skull is more ellipsoid in shape, 
the range of curvatures can be decided. We set the range of curvature 
values to be (0, 0.1), then further divided this range into small bins, 
each of which should have the same value (e.g. bin=0.001 or 0.005). As 
a result, each bin represents a smaller range of curvature values within 
(0, 0.1). The curvature value of a vertex that falls into any bin should 
contribute to the y-axis (percentage of vertices) of the according bin.  

Statistical Modelling
In order to study the pattern of different skull shapes, we designed 

the statistical model to use two parameters as contributions. The first 
parameter used was the cranial index, which roughly describes the 
scale of the skull volume. The second parameter was the curvature 
distribution of a skull. However, curvature distribution is a curve that 
represents how curvature values of a mesh behave within a certain 
range, which means that the pattern of curvature distribution will vary 
depending on different types of shape. Thus, a method of summarizing 
the pattern of curvature distribution into one variable was needed.

In statistics, moment is a common way to quantify the shape 
of a distribution curve or a set of points. There are four significant 
moments: the mean (1st moment), variance (2nd moment), skewness 
(3rd moment) and kurtosis (4th moment) respectively. 

The kurtosis is defined as normalized fourth moment, and measures 
the weight of the tail for a distribution:

2
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Where 2µ  is the variance and 4µ  is the fourth moment. If the 
value of k is 3, the distribution is a normal distribution. If the value 
of k is greater than 3, the distribution tends to have long and fat tails, 
whereas values lower than 3 will have distributions with short tails. 
Considering the geometrical meanings of significant moments, we 
decided to utilize kurtosis to measure the curvature distribution. 

Results
System Development with Training Data

In this section, we will demonstrate how mesh simplifications, 
skull normalization and the bin values of curvature distribution affect 

the performance of our system. For each feature, we will represent the 
results with all possible approaches we implemented, while the other 
features were fixed.

Mesh Simplifications

Figures 2 to 5 represent the measurements of skull shapes with four 
different approaches of mesh simplification. All other parameters were 
kept constant. The iteration value for surface smoothness was set to 
20, all the skulls were normalized, and the bin value was 0.005. We 
represented a skull shape with both cranial index and kurtosis (in log) 
of its curvature distribution.

Figure 2 indicates various skull shapes, which were all composed 
of 50000 triangular faces. The black dot is from a healthy baby, the 
two green dots indicate scaphocephaly cases, the blue dots represent 
two brachycephaly cases, and the red dot is from a trigonocephaly 
patient. From the x-axis, we can see that scaphocephaly patients have 
lower values than the other cases, the trigonocephaly skull was closer 
to a healthy shape, and the values of the two brachycephaly cases 
were relatively higher than the others. While we expected that the 
distribution of kurtosis values could differentiate the different types of 
craniosynostosis, this was not the case. One brachycephaly patient was 

Figure 2. Results from training data, which the number of faces of each surface mesh is 
50000. The black dot is the normal skull, the green dots are the scaphocephaly, the red dots 
are the trigonocephaly, the blue dots are the anterior plagiocephaly.

Figure 3. Quantified results with the second mesh simplification method, which reduces 
the number of faces to the limitations. The black dot is the normal skull, the green dots 
are the scaphocephaly, the red dots are the trigonocephaly, the blue dots are the anterior 
plagiocephaly.
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at the same level as the control patient, and one scaphocephaly case had 
the highest value while the other scaphocephaly case had the lowest.

Figure 3 represents skull meshes that were simplified until the 
number of faces ceased to change. While x-axis values were the same as 
previous, the values of kurtosis were quite different. The kurtosis of the 
normal skull was distinct from pathological cases. However, one value of 
scaphocephaly was higher than the trigonocephaly and brachycephaly 
patients, while the kurtosis value of the other scaphocephaly case was 
the lowest. Therefore, this method was also unable to classify the types 
of skull shapes.

Figure 4 displays skull meshes where the number of faces 
was all halved by four times. Figure 5 shows the skull shapes with 
similar numbers of vertices. Under both simplification methods, the 
different types of craniosynostosis were able to be differentiated in 
similar patterns. The healthy skull had the lowest kurtosis value, the 
trigonocephaly skull had a greater value, the brachycephaly patients 
had even greater value, and the scaphocephaly cases had the highest 
value. The values of scaphocephaly cases deviated furthest from the 
control case, which corresponds to the fact that scaphocephaly skulls 
are the most deformed. In addition, the value of the trigonocephaly 
case was closest to the control case while the shape of this type of skull 
was similar to normal shape only except the forehead and the cranial 
index was in the same range as normal. 

Since both methods were effective, we decided to combine them. 
First, for all the skull shapes, the number of faces was halved four 
times. On the basis of this step, for each type of craniosynostosis, we 
selected the skull that had the smallest number of vertices, and tuned 
the number of vertices of the other skulls to the same level, allowing 
±500 difference depending on the complexity of the skull shape.

Skull Normalization

With a selected mesh simplification method, we tested whether 
skull normalization was necessary or not. With the optimized 
simplification method and bin = 0.005, we inputted the training data 
into our system without normalization, as displayed in Figure 6. The 
kurtosis value of trigonocephaly was higher than the values of the 
brachycephaly cases, and the value of one scaphocephaly case was 
at the same level as the trigonocephaly case. This demonstrates that 
without skull normalization, the distinct shapes of scaphocephaly and 
trigonocephaly cannot be differentiated. In addition, the kurtosis value 
of trigonocephaly was unexpectedly greater than brachycephaly. As a 
result, we decided to continue with skull normalization in the following 
experiments.

The Bin Values

Next, we explored the optimal bin value that would best classify 
the types of skull shapes. We tested bin values from 0 to 0.01, in 0.0005 
increments. 

The results of 0.0005, 0.001, and 0.01 bin values are displayed in 
Figures 7 to 9. At these bin values, the different types of craniosynostosis 
could not be differentiated from normal (the values of brachycephaly 
patients all overlapped with the values of trigonocephaly cases).

Figures 10 to 13 display the results with other bin values (0.004, 
0.005, 0.006 and 0.008). With these values, our system was able to 
demonstrate the types of craniosynostosis well, from which we could 
see that both Figure 11 and 13 best differentiate the craniosynostosis 
types, but indicated with different patterns, where the kurtosis values 
of brachycephaly cases were higher than the trigonocephaly case in 
Figure 11, which pattern was inverted in Figure 13. Since we hope that 
with a closer cranial index to normal case, the kurtosis value should be 
closer to normal. As a result, we preferred bin = 0.005 to be the most 
appropriate value. 

Figure 4. Kurtosis vs cranial index with different skull shapes, which number of faces were 
halved four times. The black dot is the normal skull, the green dots are the scaphocephaly, 
the red dots are the trigonocephaly, the blue dots are the anterior plagiocephaly.

Figure 5. Kurtosis vs cranial index with different skull shapes, which number of vertices 
were at the same level. The black dot is the normal skull, the green dots are the scaphocephaly, 
the red dots are the trigonocephaly, the blue dots are the anterior plagiocephaly.

Figure 6. Kurtosis vs cranial index with different skull shapes without normalization. The 
black dot is the normal skull, the green dots are the scaphocephaly, the red dots are the 
trigonocephaly, the blue dots are the anterior plagiocephaly.
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Figure 7. The measurements of skull shapes with bin=0.0005. Figure 10. The measurements of skull shapes with bin=0.004.

Figure 8. The measurements of skull shapes with bin=0.001. Figure 11. The measurements of skull shapes with bin=0.005.

Figure 9. The measurements of skull shapes with bin=0.01. Figure 12. The measurements of skull shapes with bin=0.006.
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System Testing

We added test data into our system to investigate its accuracy. As 
a comparison, we also provided the results with bin=0.008, which was 
previously a good indication between different types of craniosynostosis 
with our training data (as seen in previous section). In Figure 14 and 
15, we added three scaphocephaly patients and four trigonocephaly 
cases, with bin values 0.005 and 0.008 respectively. As seen in Figure 
15 (bin=0.008), the system was able to accurately characterize the types 
of craniosynostosis except for two scaphocephaly cases, which were 
overlapped with the values of trigonocephaly cases. Again, although the 
trigonocephaly cases obtained very similar kurtosis values, they were 
still unexpected higher than brachycephaly cases. A bin value of 0.005 
was confirmed to be optimal for our evaluating system since the skull 
shapes dispersed in the figure in a way such that the further a cranial 
index deviated from the control case, the further the corresponding 
kurtosis value deviated from the value of normal.

With the confirmation of our evaluating system with bin=0.005, 
we further added one atypical trigonocephaly and two anterior-
plagiocephaly cases (Figure 16). We also provided an aerial view 
of an atypical trigonocephaly skull in Figure 17, next to a typical 
trigonocephaly skull. A typical trigonocephaly patient should have a 
triangular forehead (Figure 17), whereas the forehead of the skull at the 
right side looks normal. We can only see the deformity from the side 
view of this skull in Figure 18, and neurosurgeon diagnosed this skull as 
a mild trigonocephaly. Looking back to Figure 16, the cranial index of 
this patient was 0.812, which was considered in the normal range, and 
the kurtosis value was lower than the values of typical trigonocephaly 
cases. Therefore, our evaluating system indicated this case as a mild 
trigonocephaly case, which matched the truth.

The purple dot, which was close to one of the brachycephaly skull 
shapes (blue dots), was denoted as “plagiocephaly case one”. The right 
side of Figure 19 showed the top view of this skull shape, whereas the 
left side was from the brachycephaly patient (blue dot) that was very 
close to this plagiocephaly case in Figure 16. We can see from Figure 
19 that both skulls had similar shapes, which were both flat and short. 
In addition, these two skulls had similar cranial index values indicated 
in Figure 16, and is therefore their kurtosis values were anticipated to 
be close. 

The second plagiocephaly patient (purple dot) fell into the 
trigonocephaly region, surrounded by red dots in Figure 16. We 

Figure 13. The measurements of skull shapes with bin=0.008.

Figure 14. The measurements of skull shapes from test data with bin=0.005. 

Figure 15. The measurements of skull shapes from test data with bin=0.008.

Figure 16. Best results with a bin value of 0.005. The black dot is the normal skull, the 
green dots are the scaphocephaly, the red dots are the trigonocephaly (the one with the 
arrow is a bit less typical when observed clinically by an expert), the blue dots are the 
anterior plagiocephaly.

provided the top view of this skull shape in the right side of Figure 
20, and the top view of the first plagiocephaly skull shape at the left 
side. As comparison, we can see the level of deformity of this second 
plagiocephaly skull was much less severe than the first one, and the 
value of cranial index was 0.83 that was close to our normal case. As a 
result, it is predictable that the kurtosis value of this patient was lower 
than the first plagiocephaly case and much closer to the normal patient
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our evaluating system with different algorithms in order to determine 
the best way to classify the different types of shapes. 

Cohen and Maclean categorized skull shapes into four types 
on the basis of CI: dolichocephaly (CI ≤ 75.9), mesocephaly (CI 
between 76.0 and 80.9), brachycephaly (CI between 81.0 to 85.4), 
and hyper-brachycephaly (CI ≥ 85.5) [11]. A typical skull shape for 
scaphocephaly would most likely be dolichocephaly, and the CI of a 
typical brachycephaly head ought to be higher than 85.5. This validated 
our algorithm to calculate CI from Figure 21, where the CI’s of all 
the scaphocephaly cases were lower than 0.7, and the CI’s of the two 
brachycephaly cases were higher than 0.9.

On the other hand, not all shapes categorized as dolichocephaly, 
brachycephaly, or hyper-brachycephaly are pathological. In a previous 
study, 35 Polish children (aged 4-6 months) and 53 Polish children 
(aged 7-12 months) diagnosed as having normal head shapes were 
found to have an average CI of 81.45±7.98 and 83.15±7.98, respectively 
[8]. According to the study, although mesocephaly is the dominant 
head shape among children with normal head development, other head 
types present as well, especially brachycephaly [8]. Similar results were 
also found in a cohort of infants from the United States [12]. Wolański 
et al. [13] found that the average CI for infants between the age of 0 to 
6 months  is 83.75±7.25, whereas Dekaban concluded the average CI 
for infants within 12 months is 78.36 [13,15]. In addition, some skull 
shapes may exhibit a combination of several different features, such as 
a trigonocephaly patient with brachycephaly head shape (the red dot in 

Discussion
Curvature is an intrinsic feature that describes the local shape of 

a surface, and therefore, calculating the curvature values of a skull is 
the key procedure in our evaluation system. Surface mesh, which is 
composed of triangular faces and vertices, was adopted to generate 
each skull, and each vertex has a curvature value according to its 
neighbourhood of vertices and faces. We used a statistical method 
called kurtosis to summarize all the curvature values of a skull mesh 
into one number, which can be outputted with the cranial index of a 
skull. There were several steps in our algorithms, which could affect the 
curvature values, such as the method for simplifying the skull shape, 
the size of the skull shape, and the method for representing a curvature 
distribution. We selected several skull shapes from different types of 
craniosynostosis as training data, which were repeatedly inputted into 

Figure 17. Top view of trigonocephaly skulls, the left one is a typical shape and the right 
one is the untypical case shown with an arrow in Figure 16. While the metopic suture is 
closed, the skull is less “pointy”.

Figure 18. Side view of trigonocephaly skulls, the left one is a typical shape and the right 
one is the untypical case shown with an arrow in Figure 16. While only the metopic suture 
is closed, the skull is elongated and the parietal bone is higher than expected.

Figure 19. Comparison of skull shapes from top view between a brachycephaly (left: 
bilateral coronal synostosis – also seen as bilateral anterior plagiocephaly) and a left 
plagiocephaly patient (right image).

Figure 20. Comparison of skull shapes from top view, between 2 left  anterior plagiocephaly 
to show how variations can occur even with the same suture being closed.

Figure 21. An indication of expected areas of shape results for each type of skull shapes. 
Dolichocephaly, mesocephaly, brachycephaly and hyper-brachycephaly were separated by 
yellow-vertical-dashed lines.
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Figure 21 with CI of 0.88). As a consequence, for the CI values for each 
type of skull shape, we would expect an area on our 2D output figure 
distributed by diverse cases of one type of craniosynostosis, which 
reasonably overlaps with areas of other types (dashed ellipses in Figure 
21). With more data added, we expect each area will be enlarged.

Although we only had one normal case in our database, this normal 
head shape was a mesocephaly. As the middle point among all the 
CI values, we considered this normal head to be our standard head 
shape. If any pathological skull shape was restored back to this shape, 
we regarded the associated surgery to be effective for this patient. We 
would expect that other normal shapes would be distributed within the 
black dashed circle shown in Figure 21. 

The kurtosis values in our research were interpreted as the 
summary of a head’s local shapes, and the extent of deformity of a skull 
shape. Generally, we assumed that the further the CI value deviated 
from our normal case, the greater the extent of deformity in the skull. 
The results in Figure 21 validated our assumption, and also matches 
research from Ruiz-Correa et al. [14]. In their study, which measured 
the severity of scaphocephaly heads, the CI was found to have a positive 
linear correlation with their severity measurement of scaphocephaly 
head shapes [14]. Therefore, the overlapped regions could also be 
explained by the fact that some skull shapes might be very similar even 
if they belong to different types of craniosynostosis, or the same level of 
deformity but with different head shape. 

However, the kurtosis values could also fluctuate due to certain 
factors. Consider two scaphocephaly cases as an example, which are 
indicated by case 1 and 2 in Figure 21. The CI’s of these two cases were 
very close, but the kurtosis values had a gap in between. We provided 
the curvature distributions of these two skulls in Figure 22 with a color 
map of curvature, showing from blue as 0 to red as higher than 0.1. 
From an aerial view, case 1 had a short and wide forehead, and the skull 
width narrowed towards the posterior end, whereas the width of case 
2 was essentially constant across the skull. Therefore, the difference 
in local shapes could result in the discrepancy of kurtosis values, 
even though the CI values are the same. In addition, case 1 had more 
high values of curvature (indicated by more yellow and red regions) 
than case 2, especially along the edges of open areas and along the 
midline. We excluded curvature values higher than 0.1 from our shape 
quantification algorithm. As a result, less curvature values in case 1 
contributed to the skull shape evaluation, which can explain the higher 
than expected kurtosis values.

As demonstrated in previous studies [17,18]. Our system can be 
considered stable if the inputted skulls have small open areas or relative 
short edges, though this cannot be ensured in many cases – especially 
for postoperative skulls. 

Future studies should attempt to determine a method to smoothly 
fill the open area of a skull in order to render the result as accurately 
as possible. Another step would be to increase the amount of clinical 
data used as training data to further tune our evaluating algorithms, 
resulting we believe in an expansion of the region in the graph for each 
craniosynostosis type. We  also hope to be able to effectively apply 
this algorithm to evaluate surgeries by comparing preoperative and 
postoperative skull shapes to normal cases, and determine how far the 
postoperative skull shape shifted towards the ideal normal shape.

Conclusion
We developed an algorithm able to quantify skull shape, allowing 

craniofacial surgical teams to not only qualitatively evaluate an 
abnormal skull, but also to quantitatively evaluate the degree of 
postoperative improvement compared to the preoperative skull shape. 

We evaluated the extent of skull deformity for each common type 
of craniosynostosis in a way where the further a cranial index value 
deviates from the control patient, the further its kurtosis deviates 
from the normal. From another perspective, with similar cranial index 
and the same type of shape, the kurtosis values are varied by the local 
shapes and the length of skull edges (caused by open areas). With this 
evaluating algorithm, we can evaluate a craniosynostosis surgery by 
inputting the skull measurements of a patient from different periods 
in that patient’s life. Ideally, an effective surgery should produce 
postoperative skull shapes with corresponding kurtosis values and/or 
cranial indices that shift closer and closer to the gold standard normal 
shape.

Declaration
The research was done with ethics approval. All the figures are our 

own. 

Authorship
Jing Jin: Modeling and running of the data, preparation of the 

manuscript; Roy Eagleson: Supervision of the modeling as well as design 
of the experiment, review of manuscript; Sandrine de Ribaupierre: 
General idea for research. Design of the experiment, preparation of 
manuscript.

Competing interests
No competing interests to declare

Acknowledgment
Our project is supported by the Engage Grants from Natural  

Sciences and  Engineering Research Council of Canada. Thank you to 
Marcus Lo for reviewing and formatting the manuscript.

References
1.	 Johnson D, Wilkie AOM (2011) Craniosynostosis. Eur J Hum Genet, 19: 369–376.

2.	 Aviv RI, Rodger E, Hall CM (2002) Craniosynostosis. Clinical Radiology, 57: 93–102.

3.	 McCarthy JG, Glasberg SB, Cutting CB, Epstein FJ, Grayson BH et al., 1995. Twenty-
year experience with early surgery for craniosynostosis: II. The craniofacial synostosis 
syndromes and pansynostosis--results and unsolved problems. Plast Reconstr Surg., 
96: 284–295; discussion 296–298. [Crossref]

Figure 22. A comparison of local shapes between two scaphocephaly patients (right is case 
1 and left is case 2), indicated by color map of curvature values showing from low to high 
(blue as 0 to red).

https://www.ncbi.nlm.nih.gov/pubmed/?term=Twenty-year+experience+with+early+surgery+for+craniosynostosis%3A+II
https://www.ncbi.nlm.nih.gov/pubmed/7624401


Jin J (2018) Craniosynostosis assessment using curvature distribution modes

Biol Eng Med, 2018         doi: 10.15761/BEM.1000139  Volume 3(2): 10-10

4.	 Cui M. et al. (2007) A new image registration scheme based on curvature scale space 
curve matching. The Visual Computer, 23: 607–618.

5.	 Santiesteban, Y., Sanchiz, J.M. & Sotoca, J.M., 2006. A Method for Detection and 
Modeling of the Human Spine Based on Principal Curvatures. Progress in Pattern 
Recognition, Image Analysis and Applications, 4225: 168–177. 

6.	 Zhang X. et al. (2008) 3D Mesh Segmentation Using Mean-Shifted Curvature. In F. 
Chen & B. Jüttler, eds. Advances in Geometric Modeling and Processing. pp. 465–474

7.	 Dong C, Wang G (2005) Curvatures estimation on triangular mesh. Journal of Zhejiang 
University-Science A, 6: 128–136.

8.	 Likus W, Bajor G, Gruszczyńska K, Baron J, Markowski J, et al., (2014) Cephalic index 
in the first three years of life: study of children with normal brain development based on 
computed tomography. ScientificWorldJournal, 2014, p.e502836 [Crossref]

9.	 Mendoza CS, Safdar N, Okada K, Myers E, Rogers GF, et al., (2014) Personalized 
assessment of craniosynostosis via statistical shape modeling. Med Image Anal, 18: 
635–646 [Crossref]

10.	Chen X, Schmitt F (1992) Intrinsic surface properties from surface triangulation. In 
Computer Vision—ECCV’92. Springer 739–743

11.	 Cohen MM, MacLean RE (2000) Craniosynostosis: Diagnosis, Evaluation, and 
Management, Oxford University Press

12.	Hummel P, Fortado D (2005) Impacting infant head shapes. Adv Neonatal Care, 5:329–
340. [Crossref]

13.	Wolański W, Larysz D, Gzik M, Kawlewska E et al., 2013. Modeling and biomechanical 
analysis of craniosynostosis correction with the use of finite element method. Int J 
Numer Method Biomed Eng, 29: 916–925 [Crossref]

14.	Ruiz-Correa S, Sze RW, Starr JR, Lin HT, Speltz ML et al., 2006. New scaphocephaly 
severity indices of sagittal craniosynostosis: A comparative study with cranial index 
quantifications. Cleft Palate Craniofac J, 43: 211–221 [Crossref]

15.	Dekaban AS (1977) Tables of cranial and orbital measurements, cranial volume, and 
derived indexes in males and females from 7 days to 20 years of age. Ann Neurol., 
2:.485–491. [Crossref]

16.	Chen SG, Wu JY (2004) Estimating normal vectors and curvatures by centroid weights. 
Computer Aided Geometric Design, 21: 447–458.

17.	 Shahingohar,A, and Eagleson, Roy (2012) “A framework for GPU accelerated deformable 
object modeling” The International Journal of High Performance Computing Applications, 
v.26(3), pp.203-214.

18.	 Jin,J, Shahbazi,S, Lloyd,J, Fels,S, de Ribaupierre,S, Eagleson,R (2014) “Hybrid simulation 
of brain–skull growth” Simulation v.90 (1), pp.3-10.

Copyright: ©2018 Jin J. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited.

https://www.ncbi.nlm.nih.gov/pubmed/24688395
https://www.ncbi.nlm.nih.gov/pubmed/24713202
https://www.ncbi.nlm.nih.gov/pubmed/16338671
https://www.ncbi.nlm.nih.gov/pubmed/23349146
https://www.ncbi.nlm.nih.gov/pubmed/16526927
https://www.ncbi.nlm.nih.gov/pubmed/617590

	Title
	Correspondence
	Abstract 
	Key words
	Introduction
	Methods
	Material Preparation 
	Statistical Modelling 
	Results
	Discussion
	Conclusion
	Declaration
	Authorship
	Competing interests 
	Acknowledgment
	References

