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Abstract
Several studies have assessed in detail the combined effects of two RFs on particular outcomes; however, for most situations the relevant information is not available. 
Several scenarios were simulated considering the following variables (at the following levels): i) steepness of the increasing RRs of RFs when increasing the level of 
exposure (two levels: “low” slope and “high” slope), ii) level of correlation between exposures to RFs (three levels: “negative”, “zero”, “positive”), and iii) linearity of the 
functional relationship between RRs values and exposure to RFs (five levels: “high concavity up”, “low concavity up”, “lineal”, “low concavity down”, “high concavity down”).

For these scenarios’ biases were quantified when the (usual, convenient, and possibly wrong) assumption of independence is made. The results of this study could be 
useful for assessing the quality of PAF estimations in real life situations, when two RFs are considered simultaneously.
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Introduction
The Population Attributable Fraction (PAF) is defined as

Where P(D) is the (unconditional) probability of disease over 
a specified time period, and P(D/Ē) is the probability of disease over 
the same time period conditional on non-exposed status (not exposed 
to the risk factor under study). The PAF is an epidemiologic measure 
widely used; it is the difference between overall average risk of the entire 
population (both exposed and unexposed people) and average risk in 
the unexposed, expressed as a fraction of the overall average risk [1,2].

The PAF is frequently interpreted as the proportion of disease risk 
or incidence that could be eliminated from the population if exposure 
were eliminated. The expectation is that the PAF has a practical value 
for those interested in public health prevention policy, particularly 
when dealing with an exposure that is modifiable [2]. Some authors 
have made a point against “relative” measures as PAF and in favour 
of “absolute” measures [3], an issue that has been addressed in other 
contexts [4].

Some of the problems around PAF are related to the concept of 
“causal attribution”, and to potential biases when estimating single 
risk factors’ PAFs under different study designs, and/or when using 
different counterfactuals [1,3,5-8]. However, significant limitations 
still exist with current strategies for estimating a PAF in multiple risk 
factor situations [9]; e.g. simplified approaches for PAF calculations 
under different study designs scenarios have been explored [10], but  
discussions on new sources of potential bias that may arise, particularly 
the one related to the (usually made) assumption of independence (no 
interaction in a multiplicative model using risk ratios as effect measure 
[11,12], between risk factors, are limited as far as the authors know.

A few comments by Ezzati et al. [13,14] about biases when 
estimating multiple risk factor PAFs (reproduced below) are the main 
motivation of this paper.

Potential bias when assuming independence
The contribution of a risk factor to disease or mortality, relative 

to some alternative exposure distribution, defined as the proportional 
reduction in population disease or mortality that would occur if 
exposure to the risk factor were reduced to an alternative exposure 
distribution, is defined by the generalized potential impact fraction 
(PIF) in equation (2). The alternative (counterfactual) exposure 
distribution used is one that would result in the lowest population risk, 
referred to as the theoretical-minimum-risk exposure distribution

Where RR(x) is relative risk at exposure level x; P(x) is population 
distribution of exposure; P’(x) is alternative or counterfactual 
distribution of exposure; and m is the maximum exposure level.

In equation (2), RR, P, and P’ can be joint relative risks and 
exposure distributions for multiple risk factors (i.e., x can be a vector 
of risk factors) [13].

To estimate the joint effects of two RFs with continuous exposure 
variable, each integral in the PIF relation can be replaced with

where subscripts 1 and 2 denote the two RFs and P is the joint 
distribution of the two exposures [13].
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In equation (3) we see that independence (no interaction in a 
multiplicative model [11,12]) is assumed, i.e,

The paper of Ezzati et al. [13] goes on: “Because individual RRs 
are non-linear functions of exposure, and joint RRs the product of 
such nonlinear RRs, positive correlation between risk factors would 
usually imply a larger PAF than zero correlation (for some RRs, sub-
multiplicative effect modification could result in slightly smaller PAF 
even with positive correlation). In turn, PAF with zero risk-factor 
correlation would in general be larger than negative correlation. 
Similarly, for categorical risk factors, positive correlation would in 
general result in larger PAF.”

Because these statements are relevant to assess the potential 
bias introduced when different unknown epidemiological scenarios 
are faced in practice, and corresponding assumptions are made, 
we consider it useful to explore in a more comprehensive manner 
the analytical relationships between PAF values on one hand, and 
functional relationships between exposure levels and RRs values, degree 
of correlation between RFs, and level of independence (multiplicativity 
[12]) between RRs, on the other hand. We have not seen works where 
these potential biases had been assessed in detail.

The magnitude of the biases in PAF estimations under these 
different scenarios, when independence is assumed, could be useful in 
practice because would help researchers to have an idea on the quality 
of PAF estimations, previous identification of which of the scenarios is 
closer to the actual situation they are dealing with.

Scenarios for bias assessment
For simplifying reasons, we considered just two RFs, RF1 and RF2 

each with 3 equidistant exposure levels (e.g. “low”, “medium”, “high”), 
and also assumed the same functional relationship between exposure 
levels and RRs for both RFs.

Functional relationships between exposure and RRs have been 
modelled before [15]; in this study they are represented in terms of 
(global) slope (always positive) and level of concavity (up, lineal, down), 
as from the three equidistant exposure levels. Low slope values range 
from 1 to 0.27 when moving from up high to down high concavity; 
high slope values range from 1.5 to 0.60, also from up high to down 
high concavity. See table 1 for the particular combinations of slope and 
concavity values used. Expressions used for calculating the slope and 
the level of concavity are presented in the Annex.

Correlation (as per Spearman coefficient) between RFs was set at 
three categories: “positive” (0.86), “zero” (-0.03), and “negative” (-0.86).

Finally, the level of independence (no interaction in a multiplicative 
model, [11,12]) between RRs of RFs was set at five levels, one at the 
reference “100% independence”, two over-multiplicative levels, “150% 
independence” and “200% independence”, and two sub-multiplicative 
levels, “80% independence” and “60% independence”; the level of 
independence, IND is defined as 

	

for i, j ≥ 2; i, j the levels of exposure of the RFs. RRi,j is the combined 
relative risk for the  i - th level of RF1 and the j - th level of RF2 with 
respect to the combined reference level  1,1;  RR1i is the relative risk for 
RF1 of the i - th level of exposure with respect to the reference level 1, 
similarly for RR2j and RF2. It should be noted that the assumption of 

independence in this multiplicative model does not necessarily mean 
lack of biological interaction (see e.g. [11,12]).

Several studies have assessed the combined effects of two specific 
RFs on particular outcomes (see some references in [14]; however, 
for many other situations the relevant information is not available. 
The scenarios considered in this work were designed as to facilitate 
the bias assessment when the (usual and convenient) assumption of 
independence is (necessarily) made, controlling for the other factors 
just mentioned which are easier to know as they depend not on the 
combined RRs but on the combined prevalence of the two RFs.

Results
The figures 1-3 present the PAF values for the three correlation 

levels between RFs (“positive”, “zero”, and “negative”) and the two 
slope levels (“low” and “high”). In each of the Figures the PAF values 
(vertical axis) for the 5 independence levels (different lines) and the five 
concavity levels (horizontal axis) are shown. 

It is seen that the impact of the independence assumption on the 
PAF values decreases from figures 1-3; moving correlation between RF 
from positive to negative decreases the impact of the independence 
assumption (bias decreases), and moving slope levels from low to 
high also decreases the impact (bias decreases). Within each of the 
graphs it is seen that moving from high up to high down concavity (of 
the relationship between exposure levels and RRs values), increases 
the impact of the independence assumption (bias is larger when 
independence is assumed).

In other words, the smallest impact of the independence assumption 
on PAF values is observed when correlation between RFs is negative, 
and the functional relationship between exposure levels and RRs values 
has high up concavity and high slope values; the largest impact is 
observed when correlation between RFs is positive, and the functional 
relationship is characterized by a high down concavity with a low slope.

Percentage biases for the 6 scenarios in figures 1-3 are presented in 
tables 2-4.

Illustration
Table 5a presents correlation between RFs “alcohol consumption” 

(“teetotaler”, “light”, “moderate” and “heavier”) and “smoking” 
(“currently non-smoking” and “smoking”), and table 5b the combined 
relative risks of the two above RFs for type 2 diabetes [16], observed and 
under the independence (in a multiplicative model) assumption.

It is seen that the observed relative risks are close to independence, 
except the one corresponding to “currently smoking yes” and “alcohol 
consumption heavier”; the ratios of observed/expected are 109%, 115%, 
and 58% for cells (2,2), (2,3), and (2,4) respectively. Spearman’s rank 
correlation coefficient between RFs is 0.129, i.e. close to zero. It is also 
seen that concavity is close to zero (-0.205), and global slope also close 
to zero (-0.105).

If we did not know the combined RRs, the observed situation based 
on the combined prevalence is close to scenario in figure 2a, and within 
this Figure close to “lineal”; according to this scenario, the percentage 
biases corresponding to 200%, 150%, 80% and 60% independence, 
when independence (100%) is assumed, would be  -23%, -16%, 12%, 
and 34% respectively (Table 3a).
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Figure 1. Relation between PAF and level of linearity of RRs, and level of independence between risk factors (A) Low slope for increasing RRs and positive correlation between RFs (B) 
High slope for increasing RRs and positive correlation between RFs
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Figure 2. Relation between PAF and level of linearity of RRs, and level of independence between risk factors (A) Low slope for increasing RRs and zero correlation between RFs (B) High 
slope for increasing RRs and zero correlation between RFs
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Figure 3. Relation between PAF and level of linearity of RRs, and level of independence between risk factors (A) Low slope for increasing RRs and negative correlation between RFs (B) 
High slope for increasing RRs and negative correlation between RFs

Concavity (up to down)
Up high Up low Lineal Down low Down high

-1.00 -0.50 0.00 0.15 0.45

slope
low 1.00 0.75 0.50 0.42 0.27
high 1.50 1.25 1.00 0.85 0.60

Table 1. Functional relationship between exposure levels and RR values, in terms of first level (slope) and second level (up to down concavity) trends of RR values across equidistant 
exposure levels
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Concavity Up   Down
Independence high medium none medium high

200% -13.7% -18.0% -24.6% -27.1% -33.4%
150% -9.4% -12.5% -17.4% -19.4% -24.4%
100% 0.0% 0.0% 0.0% 0.0% 0.0%
80% 7.9% 11.1% 16.7% 19.4% 27.2%
60% 23.0% 33.7% 55.8% 67.7% 111.5%

Table 2a. Bias (%) in PAF estimation when independence between RRs is assumed. Low slope for increasing RRs and positive correlation between RFs

Concavity Up Down
Independence high medium none medium high

200% -7.7% -9.4% -11.7% -13.4% -17.1%
150% -5.2% -6.4% -8.0% -9.2% -11.9%
100% 0.0% 0.0% 0.0% 0.0% 0.0%
80% 4.1% 5.1% 6.6% 7.7% 10.3%
60% 11.5% 14.5% 18.8% 22.4% 31.0%

Table 2b. Bias (%) in PAF estimation when independence between RRs is assumed. High slope for increasing RRs and positive correlation between RFs

Concavity Up   Down
Independence high medium none medium high

200% -14.6% -18.1% -23.1% -25.2% -30.4%
150% -9.7% -12.0% -15.6% -17.1% -21.0%
100% 0.0% 0.0% 0.0% 0.0% 0.0%
80% 7.0% 9.0% 12.3% 13.8% 18.1%
60% 18.4% 23.9% 33.9% 38.7% 54.1%

Table 3a. Bias (%) in PAF estimation when independence between RRs is assumed. Low slope for increasing RRs and zero correlation between RFs

Concavity Up   Down
Independence high medium none medium high

200% -8.8% -10.2% -12.0% -13.4% -16.4%
150% -5.7% -6.7% -7.9% -8.8% -10.9%
100% 0.0% 0.0% 0.0% 0.0% 0.0%
80% 4.1% 4.7% 5.7% 6.4% 8.0%
60% 10.4% 12.2% 14.6% 16.5% 21.0%

Table 3b. Bias (%) in PAF estimation when independence between RRs is assumed. High slope for increasing RRs and zero correlation between RFs

Concavity Up   Down
Independence high medium none medium high

200% -12.2% -15.4% -20.4% -22.5% -27.9%
150% -7.3% -9.5% -13.0% -14.5% -18.6%
100% 0.0% 0.0% 0.0% 0.0% 0.0%
80% 4.1% 5.6% 8.5% 9.8% 14.0%
60% 9.3% 13.1% 20.6% 24.4% 37.2%

Table 4a. Bias (%) in PAF estimation when independence between RRs is assumed. Low slope for increasing RRs and negative correlation between RFs

Concavity Up   Down
Independence high medium none medium high

200% -8.3% -9.6% -11.3% -12.6% -15.4%
150% -5.0% -5.9% -7.0% -7.9% -9.9%
100% 0.0% 0.0% 0.0% 0.0% 0.0%
80% 2.8% 3.4% 4.2% 4.9% 6.5%
60% 6.5% 7.9% 9.9% 11.6% 15.9%

Table 4b. Bias (%) in PAF estimation when independence between RRs is assumed. High slope for increasing RRs and negative correlation between RFs

 
Alcohol consumption category (g/d): Frequencies. Alcohol consumption category (g/d): Prevalences (%)

teetotaler light moderate heavier total teetotaler light moderate heavier total

C
ur

re
nt

 
sm

ok
er

s no 2598 8768 4422 3131 18919 10 33 17 12 72
yes 772 2693 1754 2105 7324 3 10 7 8 28

total 3370 11461 6176 5236 26243 13 44 24 20 100
Spearman's rank correlation coefficient: 0.129

Table 5a. Correlation between Alcohol Consumption and Current Smokers in women [16]
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Discussion
This study made several assumptions that limit the generalizability 

of its results. First, it considers only two RFs, each of them with three 
levels of exposure and having the same, and a simple functional 
relationship between these levels of exposure and the corresponding 
RRs in terms of slope and concavity.

It has been reported that the biases introduced from wrong 
assumptions when estimating PAF are in general not important (pp. 
2173, [14]); however, our results show that this is not always the case. 

Three levels were used for the statistical correlation between 
exposures of the RFs as a source of bias for the estimation of PAF, 
though it has been reported this does not have an important effect on 
the final estimation (pp.2172, [14]). From our results in Tables 2-4, 
correlation between exposures to RFs does seem to be non-negligible.

Sub-multiplicative models are much more frequent than 
over-multiplicative models [14,17] so the two levels below 100% 
independence (80% and 60%) should be more useful in practice than 
the two levels above (150% and 200%).

In summary, for simple practical situations we might find the 
scenarios studied in this paper useful to assess approximately the range 
of biases introduced when the (convenient) independence assumption 
is made.

Annexure
With n = number of exposure levels; xi = 1,2,…,n; yi = RR1, RR2,…, 

RRn

a) Formula for the slope:  

b) Formula for the level of concavity:

this concavity expression provides an average of the changes in slopes 
for consecutive pairs of points (levels of exposure to the RF). Positive 
values indicate down concavity; zero values indicate a (close to) straight 
line, and negative values indicate up concavity.
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RRs observed RRs under independence assumption

alcohol consumption alcohol consumption
teetotaler light moderate heavier teetotaler light moderate heavier
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For RRs of "alcohol consumption": slope=-0.105; concavity=-0.205

Table 5b. Combined Relative Risks (RRs) for type 2 diabetes: observed and under independence assumption in women [16] 

Copyright: ©2019 Seuc AH. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited.

https://www.ncbi.nlm.nih.gov/pubmed/29472187
https://www.ncbi.nlm.nih.gov/pubmed/17173722
https://www.ncbi.nlm.nih.gov/pubmed/25721747
https://www.ncbi.nlm.nih.gov/pubmed/27547696
https://www.ncbi.nlm.nih.gov/pubmed/25511307
https://www.ncbi.nlm.nih.gov/pubmed/11413183
https://www.ncbi.nlm.nih.gov/pubmed/20642703
https://www.ncbi.nlm.nih.gov/pubmed/18831748
https://www.ncbi.nlm.nih.gov/pubmed/4050778
http://www.ncbi.nlm.nih.gov/pubmed/12882947
https://www.ncbi.nlm.nih.gov/pubmed/12892956
https://www.ncbi.nlm.nih.gov/pubmed/20410096
http://www.ncbi.nlm.nih.gov/pubmed/11236398

	Title
	Correspondence
	Abstract
	Key words
	Introduction
	Potential bias when assuming independence 
	Scenarios for bias assessment 
	Results
	Illustration
	Discussion
	Annexure
	References

