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Abstract
Purpose: In general, there is a reciprocal relationship between the width and flux from an x-ray focal spot (corresponding to spatial resolution and photon noise), so 
that large focal spots are eschewed in computed tomography (CT) and projection and CT mammography. We wish to overcome this limitation. The goal of foxel 
based computed tomography (FoxelCT) is to achieve spatial resolution limited by the detector pixel size rather than the focal spot size, and therefore permit the use 
of much smaller detector pixels and/or larger focal spots in clinical CT.

Methods: Rather than using the standard approach of treating the x-ray source as a point, we digitally represent the focal spot as an emission picture consisting of 
pixels we call foxels (FOcal spot piXELS). Intersections of foxel rays with reconstruction voxels are approximated using the Wu antialiasing line drawing algorithm. 
All foxel rays in the x-ray light field impinging on a given detector pixel are, in effect, lumped together into a single “passage” or compound ray sum. In this 
introductory paper noise and other effects that degrade CT are not considered allowing us to demonstrate the upper bound of improvement afforded by the geometry 
of foxels. The FoxelCT algorithm is a generalization of MART (Multiplicative ART).

Results: We show, by simulating a fan beam body scanner configuration, that the loss in resolution versus focal spot size is much slower using foxels compared to the 
loss when representing the focal spot as a point source. For any given focal spot size, approximating it as a point is always worse than using foxels and furthermore 
introduces anatomical distortions.

Conclusions: Foxels permit the use of larger focal spots and thus greater x-ray photon flux with little loss of resolution. Future scanners could take advantage of foxels 
to increase the ratio of focal spot size to detector pixel size, via bigger focal spots and/or smaller detector pixels. Existing scanners could be immediately enhanced 
in image quality via incorporation of foxels in their software. Foxels are applicable to any form of radiological imaging that uses focal spots of finite width, including 
multisource scanners.
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Introduction

The first experimental CT (computed tomography) scanner used a 
single 1/3 mm x 2.5 cm detector [1, 2], while the first commercial CT 
scanner a decade later produced images of 80x80 pixels across the head 
[3] with two 1 mm x 1 cm detectors.

Despite the passage of 56 years, clinical CT scanners still use 
detectors that are about 1 mm in the smallest dimension [4]. They 
generally do not take advantage of advances in reduced detector pixel 
width from the fields of digital radiography, microtomography and 
nanotomography (Figure 1, Table 1). The primary reason for this is 
that focal spots substantially smaller than 1 mm do not deliver enough 
x-ray flux for body scanning. Thus, the body CT detector pixel size 
has been wed to this relatively large focal spot size. Our goal here is 
to demonstrate a new CT algorithm, FoxelCT, which permits a larger 
ratio of focal spot size to detector pixel size. Thus, smaller detector 
pixels and/or larger focal spots may now be used.

Traditionally, CT algorithms treat the focal spot x-ray source as if 
it were a single mathematical point [152], despite the fact that the finite 
focal spot width is known to limit the resolution of CT [4, 153, 154]. Our 
FoxelCT algorithm accounts for the focal spot as an extended source.

To this day (and earlier [155]), progress in reducing focal spot sizes 
has been hampered by the proportionality of x-ray flux to focal spot 
size [156] (Figure 2, Table 2):

“The tube power basically influences two different image quality 
criteria. On the one hand, the focal spot size is limiting the spatial 
resolution and is supposed to be more enlarged for higher tube powers. 
On the other hand, sufficient radiation intensities are necessary to 
achieve adequate signal-to-noise ratios. These two image quality 
criteria, which are contrarily related to the tube power, need to be well 
balanced in a sample specific way” [123].

“The main trade-offs in x-ray tube design are the total x-ray photon 
output and the size of the region of x-ray generation/electron beam 
footprint on the anode or target (also named thermal focal spot). 
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Figure 1. Detector width d in µm on a logarithmic scale versus year. Since the turn of the century, a substantial reduction in x-ray detector size has occurred, driven mostly by 
microtomography for small animals and nanotomography using synchrotrons. For references from which the data was gleaned, please see Table 1.
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Figure 2. Maximum beam current in mA versus maximum dimension of the focal spot size f (µm) for some contemporary rotating anode x-ray tubes (listed in Table 2). Note that there is 
an approximate proportionality consistent with the prediction of [156] for small focal spot sizes and with the correspondence between electron spot size and focal spot size [157]. Part of the 
scatter here may be due to the fact that we are using the largest linear dimension rather than the area of the focal spot.

More photons can be created by increasing the electron beam power, 
but this is limited by target melting and/or rapid evaporation, and/or 
lifetime degradation due to thermal cycling. One could prevent target 
melting by increasing the thermal focal spot size; however, this may 
cause a larger optical focal spot with consequences in degraded image 
resolution…. In an ideal system, the origin of the x-ray flux is treated 
as a point source to maximize spatial resolution. In reality, this region 
must have a finite area to decrease the maximum heat flux on the 
target/anode for x-ray generation” [4].

“…technical measures to limit [CT] focal spot blooming are 
important to avoid reduced spatial resolution” [154].

Even in micro-CT: “The focal spot size of the x-ray tube varies from 
5 µm to 30 µm depending on its output power…” [148].

Thus, while smaller focal spots have been achieved for various 
applications (Figure 3), they do not find much use in clinical CT 
because of reduced flux and high temperatures [160]. Nor are the larger 
focal spots (Figure 1) used in CT, because, treated as point sources, 
they would reduce image detail. While someday the standard medical 

x-ray rotating anode tube may be replaced by x-ray microbeams [161-
163] or other technology, or the focal spot size made irrelevant via 
microcapillary [164-166], zone plate [167] or mirror [71] x-ray optics, 
in the interim we offer a partial solution to the dilemma via a new CT 
algorithm using foxels, which allows larger focal spots and/or smaller 
detector pixels to be considered.

In standard projection radiography, the loss of detail with large 
focal spots may sometimes be diagnostically acceptable:

“This investigation demonstrates that the impact of focal spot size 
choice for a number of examination types is limited, and there appears 
to be little support for using fine focus for at least some projections 
where it would have traditionally been employed. Whilst the authors 
at this preliminary stage do not propose that multi-foci X-ray tubes 
have no future role in radiology departments, the advantages of a single 
broad focus X-ray tube in terms of lower manufacturing costs, reduced 
customer service and replacement expenses and the ability to set shorter 
times to minimize movement unsharpness cannot be dismissed” [168].

“The results of this study suggest that the clinical significance of 
varied focal spot size is negligible” [69].
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Year Detector
width d in µm

Focal spot widthf
in µm

Ratio
f / d

Gantry diameter
2r in m

log10 f / 2r( )( ) CT Reference

1943 300  [25, 26]
1950 4900  [27]
1951 2000  [28]
1955 2340  [29]
1955 3000  [29]
1956 300  [30]
1957 130  [31]
1957 300  [32]
1957 310  [31]
1957 1200  [33]
1958 400  [15]
1958 16000  [15]
1961 333 333 1.0 0.30 -2.95 √  [1]
1964 1000  [34]
1964 2000  [34]
1965 2000  [35]
1968 1000  [36]
1968 2000  [36]
1969 50  [37]
1969 340  [37]
1969 360  [38]
1969 500  [39]
1969 2000  [40]
1970 50  [41]
1970 300  [14]
1970 2000  [40]
1971 60  [42]
1971 270  [19]
1971 300  [42]
1971 1000  [42]
1972 2 2 1.0  [43]
1973 1000 1000 1.0 1 -3 √  [44]
1974 600  [45]
1974 2450  [45]
1975 148  [46]
1975 800 0.28 -2.54  [47]
1975 1490  [46]
1975 50  [48]
1977 15  [49]
1979 30  [50]
1980 15  [26]

Table 1. X-ray detector sizes and focal spot sizes versus year published. Simulation studies are included where physical sizes are mentioned, as dimensions are usually based on available 
technology. Detector sizes are physical sizes, not binned groups of them. The smallest sizes reported are via “indirect detection” [5], where x-ray photons are converted to light and the 
flux measured via light microscopy and a digital camera, producing an “effective” detector pixel size much smaller than that of the camera. While this would seem to compromise field of 
view, one could imagine a CT gantry consisting of an array of such microscopes combined with CT algorithms that work well with a limited number of angles. We do not deal with issues 
of crosstalk between neighboring detector pixels and attempts to overcome it by achieving subpixel detector resolution [6]. Some overmagnification relative to the Nyquist limit may occur, 
but is ignored here because of prospects for superresolution [7, 8]. Where a range of focal spot sizes is reported, for a given detector size, the lowest and highest focal spot sizes are listed 
here. Note that the commercially reported sizes of focal spots at least used to be substantially underestimated  [9-13], so that some of the values reported here for focal spot width f could 
be raised by a factor of up to 2.2 [13-17]. On the other hand, the standard pinhole method and others [18] may overestimate [19, 20] or underestimate [20] the focal spot size, so we do 
not here try to correct any reported values. See [21] for a recent discussion of nominal versus actual focal spot sizes. For small, roughly rectangular focal spots, the smaller width is listed 
here. However, since we are suggesting that larger focal spots are useful, for rectangular focal spots that are over 1 mm in one dimension, we give that larger dimension. X-ray sources vary 
from standard x-ray tubes to synchrotron, high-harmonic upconversion (HHG) x-ray lasers and sharp needle emission sources. Sources are listed without regard to whether hard or soft 
x-rays are produced, and whether monochromatic or broad spectrum. For synchrotrons, the focal spot size is taken as the diameter of the pinhole confining the low angular divergence x-ray 
beam, which, for example, may travel 27 m before striking the object being examined [22]. Sizes of gantries vary from synchrotron beam lines to body scanners to microtomography and 
nanotomography, with assorted technologies, with or without gratings. These comparisons, of course, leave out a huge number of variables, including depth of focus [23], wavelength or 
photon energy, contrast, field of view, region of interest imaging, detector lag, detector crosstalk, number of CT projections, angular dependence of the focal spot shape, the heel effect, beam 
hardening, beam intensity, exposure time, source to specimen distance, specimen to detector distance, magnification, scatter, voxel size, and composition, size and opacity of the specimen, 
etc. Nevertheless, the wide scatter in the ratio of focal spot width fw to detector width d suggests a general lack of optimization of this ratio. Ratios in review articles may not be for the 
same pieces of equipment, as both parameters are rarely reported together, but are included, since the measurements reviewed represent a range of possibilities. “CT” refers to any computed 
tomography technology, whether clinical or experimental, including tomosynthesis. The larger the ratio of focal spot width f to gantry diameter 2r (distance between the x-ray source and 
the detector), converted here to log10 f / 2r( )( ) , the greater the angular difference would be between foxel rays and the central ray from a point source. This may be taken as a measure of the 
effectiveness of using foxels, because the larger the value, the more foxel rays will differ from rays from a point source. The position of the object or patient with respect to the x-ray source 
and detectors, often used to increase magnification or sharpness, respectively, is not taken into account here, to allow a one dimensional comparison. For a plot of number of slices versus 
year for clinical CT scanners, see [24].
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1980 50  [26]
1980 100  [26]
1980 40 50 1.25 √  [51]
1980 1000 √  [52]
1982 1000 2 -3.3  [53]
1982 400 1000 2.5 2.03 -3.31 √  [54]
1988 90  [13]
1988 300  [55]
1988 1000  [55]
1989 1  [56]
1989 40 5 0.125 -2.54 √  [57]
1989 500  [58]
1991 2480  [59]
1991 9200  [59]
1992 36 40 √  [60]
1993 228 √  [61]
1993 100  [62]
1993 360 870 2.4 0.85 -2.99 √  [63]
1993 900  [62]
1993 3000 25 0.0083 0.05 -3.30  [64]
1993 3000 25 0.0083 3 -5.08  [64]
1995 100  [65]
1995 200  [66]
1995 500  [65]
1995 1000  [66]
1995 22 0.94  [67]
1995 500 80 0.16  [68]
1995 500 800 1.6  [68]
1996 680  [69]
1996 2610  [69]
1996 1660 400 0.241 2.45 -3.79 √  [70]
1997 1  [71]
1997 60  [72]
1998 10  [73]
1998 22.5 500 22.2 1.240 -3.39  [74]
1998 97  [75]
1999 0.45 1 -6.35  [76]
1999 7 300 42.9 50 -5.22  [77]
1999 35 50.5 1.44 √  [78]
2000 2.5 5 2.0 √  [79]
2000 100 600 6 1.6 -3.43 √  [80]
2001 6 √  [81]
2002 2200 600 0.27 1.302 -3.34 √  [82]
2003 0.030 150 5000 27 -5.26  [22]
2003 50 5 0.1 -4.99 √  [83]
2003 50 50 1.0 0.492 -3.99 √  [83]
2004 100000  [84]
2004 48.23 √  [85]
2004 154 300 1.95 1.18 -3.59 √  [86]
2004 154 1000 6.49 1.18 -3.07 √  [86]
2005 127  [87]
2006 12 √  [88]
2006 50 30 0.6 0.32 -4.03 √  [89]
2006 50 100 2.0 2 -4.30  [90]
2006 100 100 1.0 2 -4.30  [90]
2006 100 300 3.0 2 -3.82  [90]
2006 100 600 6.0 2 -3.52  [90]
2006 200 100 0.5 2 -4.30  [90]
2006 200 300 1.5 2 -3.82  [90]
2007 0.020 √  [23]
2007 0.175 √  [91]
2007 48 7 0.15 √  [92]
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2007 100 300 3.0 1.2 -3.60 √  [93]
2007 100 1200 12.0 1.2 -3.00 √  [93]
2007 194 400 2.1 0.8771 -3.34 √  [94]
2007 194 600 3.09 1.00 -3.22 √  [95]
2008 1.86  [96]
2008 250000  [97]
2008 0.15 0.3 2 0.16 -4.90 √  [98]
2008 0.35 0.7 2 0.18 -4.95 √  [98]
2008 0.8 5 6.25 0.2 -4.51 √  [98]
2008 50 0.9 0.018 √  [99]
2008 50 13.9 0.28 √  [99]
2008 200 800 4.0 0.75 -2.97  [100]
2008 380 10 0.026 0.6 -4.78 √  [101]
2008 380 100 0.26 0.6 -3.78 √  [101]
2009 47 √  [102]
2010 100  [103]
2010 0.13 0.05 0.38  [104]
2010 0.15 2.3 15.3  [105]
2010 5.5  [5]
2010 20  [5]
2010 23.6 140 5.9  [106]
2010 23.6 690 29.0  [106]
2011 100 √  [107]
2011 2540 1000 0.394 1.45 -3.16 √  [108]
2011 2540 20000 0.787 1.45 -1.86 √  [108]
2012 40  [109]
2012 0.074 √  [110]
2012 22 300 13.6 √  [111]
2012 22 800 36.4 √  [111]
2012 70 600 8.57 0.7 -3.07 √  [112]
2013 100  [113]
2013 7000  [114]
2013 50 √  [115]
2013 100 √  [115]
2013 154 400 2.6 √  [116]
2013 2540 0.64 √  [117]
2013 2540 1.45 √  [118]
2014 600 √  [119]
2014 6000  [120]
2014 5 55 11 √  [121]
2014 8  [122]
2014 12.1 √  [123]
2014 127 260 0.205 0.10 -2.58 √  [124]
2014 127 260 0.205 0.25 -2.98 √  [124]
2014 600 55 0.092 √  [121]
2014 1300 500 0.38 1.1 -3.34 √  [125]
2014 1300 5000 3.8 1.1 -2.34 √  [125]
2014 1500 √  [126]
2015 55  [127]
2015 400  [128]
2015 5500  [128]
2015 33 500 15 0.84 -3.23 √  [129]
2015 55 30 0.55 0.14 -3.67 √  [130, 131]
2015 55 30 0.55 0.24 -3.90 √  [130, 131]
2016 200  [132]
2016 400  [133]
2016 7000  [132]
2016 8000  [134]
2016 8000  [135]
2016 8000  [136]
2016 600000  [137]
2016 0.015 √  [138]
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2016 4.3 √  [139]
2016 8.75 √  [140]
2016 8.75 5 0.57 √  [141, 142]
2016 10 400 40.0 1.000 -3.40 √  [143]
2016 10 1000 100.0 1.000 -3.00 √  [143]
2016 46 24 0.52 143 -6.78 √  [144]
2016 50 100 2.0 0.2617 -3.42 √  [145]
2016 75  [146]
2016 75 5 0.067  [147]
2016 127 5 0.039 0.265 -4.72 √  [148]
2016 172 5 0.029  [147]
2016 194 √  [149]
2016 200 1 0.005 1.23 -6.09 √  [150]
2016 200 5 0.025 1.23 -5.39 √  [150]
2016 450 √  [151]
2016 1000 400 0.40 1.000 -3.40 √  [143]
2016 1000 1000 1.0 1.000 -3.00 √  [143]

Company/Model Maximum focal spot width (µm) Maximum beam current (mA) Source
Gulmay  [135]

NDI 320/23 3600 5
NDI 322 4500 10

NDI 320/26 5500 13
NDI 321 8000 12.5

Oxford Instruments  [158]
1000 Series - 90507 Glass X-ray Tube 33 0.5

Jupiter 5000 Series Radiation Shielded X-ray Tube 55 1.0
1501 Series Glass X-ray Tube 125 2.5
1500 Series Glass X-ray Tube 150 1.0

Varian  [159]
NDI-225/20 1000 2.8
HPX-450/11 1000 3.3
NDI-160/20 1000 4
HPX-225/20 1000 4.4
HPX-320/11 1000 5.6
HPX-160/20 1000 6.5
HPX-225/11 1000 8
HPX-160/11 1000 11.25
NDI-225/21 3000 7
NDI-160/21 3000 10
NDI-320/23 3600 5
NDI-350/23 3600 5
HPC-225FB 3900 13
NDI-350/26 4000 5

NDI-451 5500 10
NDI-452 5500 10

NDI-160/22 5500 13
NDI-225/22 5500 13
NDI-320/26 5500 13
HPC-160FB 5500 25
NDI-225FB 7500 13

NDI-226 7500 13
NDI-161 7500 19
NDI-321 8000 10

Table 2. Manufacturers’ specifications for some contemporary rotating anode x-ray tubes.

With the use of foxels, one may keep all of these advantages of large 
focal spots while attaining much of the advantage of small focal spots, 
a form of nearly “having one’s cake and eating it too”. The perception 
that we need small x-ray focal spots has been legislated, at least for 
mammography [169], though foxels could render this legal approach 
to x-ray physics moot.

One would think that a rational approach would be to at least match 
the detector width to the focal spot width, but this does not seem to be 
happening (Figure 4). Nor have we found any literature that addresses 
optimizing this ratio. Another important ratio is the focal spot width to 
the gantry diameter. This ratio is widely scattered and skewed towards 
low values (Figure 5), whereas the use of foxels would suggest that 
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higher values are attainable. Therefore our simulated experiments here 
delve into a range of CT parameters whose optimization is usually not 
considered.

The finite width of the focal spot has been invoked to reduce the 
resolution of simulated CT to make the latter more “realistic” [170]. 
Here we take the opposite approach and make use of the width of the 
focal spot to increase resolution (Figure 6).

Foxels were independently proposed by us [2, 7, 171] and at about 
the same time by other groups, who called them “subfocal spots” [172] 
and “source-lets” [94]. They offer a real space approach to deconvolution 
of the focal spot [173-176] with the attendant flexibility of iterative 
algorithms, without making any approximations [177, 178] to the 
usually complex structure of a focal spot (Figure 7). The area integral 
model (AIM) uses double integrals to estimate absorption between an 
extended focal spot and an extended detector pixel [179]. These double 
integrals are special cases of the general notion of a “passage” between 
the x-ray source and detector [180] or “ray sum” [181], also known 
as “a finite beamwidth” [182, 183]. Ray modelling (RM) [125, 184] is 
equivalent to foxel imaging, with the addition of division of the (1.3 
mm, in their case) detector pixels and incorporation of photon noise. A 
similar approach uses an “eleven-fold subsampling of the [focal] spot 
area” and “pixels (sub-detectors) covering the detector area” [185]. 

“High fidelity modeling” includes a focal spot model and a detector 
response function [186]. An ART-like algorithm has been used to 
estimate projection data for an ideal point source from projection data 
for an extended focal spot, and then reconstruct images assuming a 
point source [187].

Another approach, shown to be noise sensitive, is to deblur the 
focal spot by Fourier space/Wiener deconvolution methods [178, 200]. 
However, it is important to take into account the varying effects of the 
focal spot on voxels at different distances from the x- ray source. While 
the trapezoidal “footprint” or shadow of each voxel being reconstructed 
can be calculated [201], rotation of the voxels so they cast a rectangular 
footprint in each projection direction has been found to improve the 
image [202]. This notion of a manipulable voxel is related to pointillism 
[2]. Focal spots have been divided into many “segments” where “each 
segment carries a certain intensity weight” for a ray tracing analysis 
of the effects of focal spot shape on resolution [203], but this was not 
used for deconvolution. X-ray capillary optics [204] may be looked 
upon as directly segmenting and measuring the focal spot rays down 
to as little as [205] 1 µm. Unless a light field optics approach is taken, 
x-ray capillary optics might not work well with large focal spots [166], 
because the angular acceptance of each microcapillary tube is small, 
leading to trade-offs in angle coverage, flux and dose to the patient.

Our purpose here is to put an upper bound on the improvement 
that foxels can bring, and to optimize that improvement with respect to 
two parameters: the ratio of focal spot width fw to detector pixel width 
d and the number of foxels into which the focal spot is partitioned. 
To do this we simulate a fixed gantry diameter (distance of focal spot 
to the detector pixel at the center of the fan beam) of 2r = 870 mm, 
using a fan beam geometry with fan angle Φ = 57° (Figure 8, Table 3), 
with αmax = 865 detector pixels inside the fan beam, and ignore photon 
and instrument noise, heel effect [206, 207], beam hardening, etc., in 
this, our initially strictly geometric approach to this problem. While 
all of those parameters would degrade the reconstructed images, the 
geometric approach is valuable in giving an upper bound on what is 
achievable. We leave the effects on foxel CT of noise, etc., for future 
work. We find that foxels can offer an alternative to microfocal spot 
systems, retaining much of their high resolution while allowing the 
high flux of broad x-ray sources. Even though we have concentrated on 
CT, foxels are equally applicable to ordinary projection radiography, 
digital versions of classical tomography, and tomosynthesis. The goal 
of foxel based computed tomography (FoxelCT) is to try to achieve a 
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Figure 3. Logarithm of focal spot size in µm versus year. While there is a trend to quite 
small focal spots led by microtomography and nanotomography, in recent years extended 
area x-ray sources have also come into use, albeit for sterilization of large volumes rather 
than for imaging. Thus, we also have a trend to large focal spots. See Table 1.
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a b c

Figure 6. Conventional CT versus FoxelCT.(a): A conventional fan-beam CT scan algorithm treats the focal spot as if it were a single point from which rays are projected to the detector 
pixels. The square is the region being reconstructed, represented digitally by array U, whose iterative approximations are the arrays Ai . The arcs on top indicate: 1) solid line, the focal 
spot as a continuum x-ray emitter, in this case of width (arc length) fw equal to that of 3 detector pixels of width d (i.e., fw = 3d); 2) small dashes, the continuum focal spot approximated by 

9wψ =  finite elements; 3) large dashes, aw = 5 foxels used in reconstructing the plane of voxels. aw  is an independent variable. In our simulation, these three arcs would be superimposed 
on the ring of detector pixels. They are displaced radially here for clarity. (b): The focal spot is divided into multiple foxels (just aw = 3 here) which project rays onto the detector pixels. 
For aw = 3 here, the foxels have the same width as the detector pixels. The projections are taken from the midpoints of the foxels. The rays from each foxel are colored differently. Dashes 
are to make the figure understandable in gray scale. (c): The same rays are recolored according to which detector pixels see them. For each detector pixel, these are the rays, grouped into 
a compound ray, used to calculate ( ), , ,F iD gα β  in Equation 2. A similar calculation, emanating from the wψ  finite elements, is used to calculate the forward projection data ( ), ,ED gα β  in 
Equation 1 for the same detector pixels. Note that the use of foxels does not change the gantry configuration at all. It just allows the focal spot to be represented more realistically as having 
some width. In relation to our equations, the gantry angle , 1,...,g g Gθ =  is the angle of the line between the middle of the focal spot and the detector pixel in the middle of the arc of detector 
pixels encountered by the fan beam of angle Φ . The length of that line is the diameter 2r of the gantry. This geometry can represent either a third generation CT scanner, in which the arc 
of detector pixels and the x-ray source rotate together, or a fourth-generation scanner, in which there is a full ring of stationary detector pixels, and only the x-ray source rotates. However, 
we do constrain both to have equal distances r from the center of rotation in our simulation. The indexing of the detector pixels in the fan beam, max1,...,α α= , depends on which generation 
scanner is being considered. The index β  is needed when the detector array is two dimensional. Our code applies to third generation, though our results are independent of third versus fourth 
generation. Note that figures similar to (b) and (c) could be drawn for the finite elements, but would involve different rays between the finite elements and the detector pixels.

spatial resolution limited by the detector pixel size rather than the focal 
spot size. The advantage to the patient is higher resolution for a given 
x-ray dose, lower dose for the same resolution, or shorter exposure 
times, reducing patient motion, heart motion, etc.

Methods
Choice of CT algorithm

We use the MART algorithm (Multiplicative Algebraic 
Reconstruction Technique) [2, 180, 181, 215] which is a well 
characterized [216-225] nonlinear (non-Kaczmarz [2, 226]) 
iterative algorithm, not the best possible, but a good standard for 
comparison. Two desirable characteristics are: a) if MART is started 
from nonnegative voxel values, all voxels remain nonnegative as the 
calculation proceeds; b) where the x-rays have only traversed air, 
MART generates zero values for those voxels, and thus confines the 
reconstruction of the data to remain within the convex hull [221, 
227-230] of the body. Improvements of MART that could be invoked 
include streak suppression [231, 232], metal artefact reduction [233], 
and postprocessing steps such as deconvolution of the point spread 
function of MART by Wiener filtration [234] and searches in the space 
of solutions of CT underdetermined equations [235].

Modeling an x-ray source with its focal spot width divided 
into finite elements

Although we will confine our computations in this introductory 
paper to 2D simulations using foxels, we will here develop the 

mathematics for the full 3D case for later use, and then derive 2D as 
a special case. For a given object or patient being scanned by the CT 
machine, let its voxels in 3D space be defined as U (x, y, z), where x, 
y, and z are the 3D coordinates of the center of each voxel (Figure 6 
and Figure 8). As foxels represent a change in the geometry of rays 
rather than the physics of CT, at this point in their development we 
presume that U is a scalar function independent of time (no patient 
motion), that Beer’s Law holds (i.e., monochromatic x-rays), and do 
not consider calibration, beam hardening and scatter corrections, nor 
fluctuations in number of photons emitted, absorbed, or detected, i.e., 
noise [183, 236]. This allows us to focus on the question of whether 
or not the geometry of foxels by itself improves CT resolution. The 
results will then be an upper bound to the improvement in resolution 
using foxels. We plan to broach these effects, including full 3D CT, in 
subsequent papers in this series, to estimate lower bounds.

Let each voxel coordinate of U (x, y, z), be defined as an integer 
number from (1,1,1) to (xmax, ymax, zmax), with the voxels on a cubic grid 
with spacing υ . This coordinate system is in the patient, and the gantry 
system containing x-ray sources and detectors is presumed to move 
relative to a stationary patient. For a gantry in which the patient is on 
a movable bed, the z-coordinate is along the bed, but in our coordinate 
system the bed is presumed stationary and the gantry moves. The 
difference can be made up via standard translation and rotation 
matrix transformations via homogeneous coordinates [237]. For 2D 
simulations z is taken as having a fixed value.

We will assume that the gantry itself has a known relationship 
between its extended 2D x-ray source S and its 2D array of detectors, and 
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that the physical properties of the source are known and independent 
of time. Note that this definition of S includes the possibility of multiple 
simultaneous x-ray sources [4], each of which would have its own focal 
spot. Thus, while we speak here of a single focal spot, the mathematics 
allows multiple focal spots.

We will also assume that the gantry takes on G discrete positions 
or configurations, i.e., that there is no motion during acquisition of 
a given projection g, g=1,…..,G. This will accommodate classical and 
inverse-geometry CT systems [238, 239], including those with multiple 
detector arrays and source arrays [240]. Gantries that move during 
projection data acquisition, causing motion blurring of the data [241], 
would require a more detailed treatment.

The reading at each detector pixel will be DE (α, β, g) indexed 
by α = 1…..,αmax, β = 1,…βmax, g=1,…,G. Since the detector pixels 
generally correspond to physical detector elements, this array is not an 
approximation. However, we will take a DE value to be an integral over 
its detector element, while approximating its location by the center of 
the detector element. We will assume that the average distance between 
nearest neighbour detector pixels is the constant d. The arrangement 
of the detector elements is otherwise not restricted, allowing planar, 
cylindrical or spherical geometries of the detector array, for instance.

Physically the focal spot is a continuous function, so its digital 
representation as an emitting image needs to be defined. Focal spots 
can be quite irregular in shape (Figure 7). For convenience, we will 
assume that the focal spot S (u, v, κ, µ) ≥ 0, where (u, v) is a coordinate 
system with the center of the focal spot at (u, v) = (0,0), and that it 
is contained within a rectangle chosen to have sides that are parallel 

f g

Figure 7. Focal spots with a variety of shapes. Note that in the digitized focal spot images 
each pixel could be regarded as a foxel, since in a real situation DE  is measured, and 
need not be calculated from finite elements. (a): Gray scale reversal of a focal spot from 
[188] with kind permission of Sanja Valentic. (b): From [189] with kind permission of 
Medical Physics and author John M. Boone. Width is 300 µm. (c): “Isopower (640W) focal 
spot images (1 mm, EN12543) depicting considerably lower surface temperatures for an 
HP [high power] technology anode [right; versus conventional anode: left].” From [133] 
with kind permission of Jim Kone. (d): Nearly symmetric focal spot of a carbon nanotube 
x-ray source. From [112] with kind permission of Medical Physics and author Otto Zhou. 
(e): Focal spot scanned from mammographic film. From [94] with kind permission of 
Medical Physics and author John M. Boone. (f,g): Focal spots from the same CT scanner 
at its maximum amperage for 70 kV and 120 kV. From [154] with kind permission of 
Medical Physics and author Cynthia H. McCollough. For a mammography focal spot that 
is highly structured see [47]. For efforts to reduce that structure see [190]. The space charge 
of electrons [21, 154], magnetic fields [100, 191, 192], as in dual CT/MRI scanners, and 
position along the cathode/anode axis [193] and projection direction [194, 195], all alter the 
size and shape of focal spots. While we are assuming that the focal spot does not vary in 
the course of data collection for a single image, we found no proof of this in the literature. 
Given the variability in the shape of the focal spot with amperage and voltage [154] and 
the little explored variation over long time [196], mechanical movement [183, 197] and 
vibration [98] and other effects requiring physical or algorithmic realignment [198], it 
would be wise to have a built in, periodic, automatic, digital imaging of the focal spot, its 
spatial variation, and its position [199] in CT scanners using the FoxelCT algorithm.

Figure 8. Simulation parameters drawn to scale. Based on the parameters of contemporary 
body scanners (Table 3), we have chosen to simulate a gantry of diameter 2r = 870 mm 
with a fan beam angle of  subtending 865 detector pixels. The full ring, in fourth 
generation CT configuration, would have 2733 detector pixels. The detector pixels are 1 
mm wide, as are the 512 x 512 voxels in the slice. A bow tie filter [208] is not simulated. 
Note that at some gantry angles the fan beam does not include the whole cross section of 
this 199 lb = 90.3 kg Visible Human Male [209], which has been gray scale reversed here so 
that “air” (see Figure 9) shows as white. The inner circle shows which voxels are included 
in the fan beam at all angles. It is sometimes apparent in individual reconstructed images.
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Hitachi
Supria 16 2014 32 20 0.625 880 51.78 920 0.472 0.7 1.4 -2.82

Scenaria 64 2010 64 40 0.635 888 51.78 880 0.448 0.7 1.4 -2.80
Scenaria 

Advanced 
128

2011 64 40 0.625 888 51.78 880 0.448 0.7 1.4 -2.80

Neusoft
NeuViz 16 2008 16 24 1.5 672 52 890 0.601 0.5 1.3 -2.84
NeViz64i 2012 64 20 0.3125 672 52 890 0.601 0.6 1.2 -2.87
NeuViz 

64c Cardiac 
(Basic)

2012 64 20 0.3125 672 52 890 0.601 0.6 1.2 -2.87

Philips
IQon Spectral 

CT 2015 128 40 0.3125 1344 52 970 0.328 0.6 1.2 -2.91

iCT Elite 2015 128 80 0.625 672 52 970 0.655 0.6 1.2 -2.91
iCT SP 2015 64 40 0.625 672 52 970 0.655 0.6 1.2 -2.91

Ingenuity 
Elite 2015 64 40 0.625 672 54 940 0.659 0.5 1.0 -2.97

Ingenuity 
Core 2015 64 40 0.625 672 54 940 0.659 0.5 1.0 -2.97

Ingenuity 
Flex32 2015 16 24 1.5 672 57 940 0.696 0.5 1.0 -2.97

Ingenuity 
Flex 2015 16 24 1.5 672 57 940 0.696 0.5 1.0 -2.97

Brilliance CT 
Big Bore 2015 16 24 1.5 816 57 970 0.591 0.5 1.0 -2.97

MX 16EVO2 2015 16 24 1.5 672 57 890 0.659 0.5 1.3 -2.84
Toshiba
AQ One 
Family 2015 160 160 1.0 896 49.2 1070 0.513 0.8 1.6 -2.83

AQ Prime 
Series 2015 40 40 1.0 896 49.2 870 0.417 0.8 1.6 -2.74

AQ RXL 2011 32 32 1.0 896 49.2 960 0.460 0.8 1.6 -2.78

Simu-
lation 2016 1 1

or 3

1
or
3

433 57.03 870 1.0 0 21 -1.62

Table 3. Contemporary CT body scanners. Data from [212]. We assume that the reported “Elements per row” = “# of detector pixels hit by fan beam”, that the gantry diameter is the distance 
between the x-ray focal spot and the detector pixels, and that both the minimum and maximum focal spot sizes are parallel to a section. Parameters calculated from the data are indicated by *. 
In calculating the section widths of the detector elements we are assuming that the detectors and the x-ray focal spot are the same distance from the center of rotation. While this assumption 
may not be exact for the individual scanners listed here, it is a special case of both third and fourth generation CT scanners [213, 214] (Figure 6). The last row shows the values we chose 
for the simulations in this paper. We have selected the largest fan beam angle Φ  represented by these commercial whole body scanners, the smallest gantry diameter, and a detector pixel 
width that matches the voxel width in the CT scans of the Visual Human Male [209], which we take as 1 mm. We consider focal spot widths fw  from zero (the point source simulation) to 
21 mm, a range that includes most standard x-ray sources used for radiography, and is more than twice as big as the larger focal spot sizes we found for a rotating anode x-ray tube (8 mm in 
[134-136] and an estimated 9.2 mm in [59]) (Table 1). Our work therefore could extend the narrow range of focal spot sizes used in contemporary CT scanners, 0.5 to 1.6 mm in this table, 
by an order of magnitude.

to the grid directions of a rectangular detector array. The coordinates 
(u, v) can represent any 2D manifold, such as the curvature of a rotating 
anode, which is opposite the curvature depicted in Figure 6. The angular 
coordinates (κ , µ) take into account that the intensity of the x-ray 
emission is angle dependent. This is the angular component of the heel 
effect, which also includes alteration of the x-ray spectrum [242], which 
we ignore for now, as we are focussing on geometric effects. Even 
without a heel effect, each detector pixel “sees” the focal spot rectangle 
from a different angle [120], and since this is a geometric effect, we take 
it into account in the general case.

The width fw and height fh of the rectangle containing the focal spot are 
chosen to be odd integer multiples of the detector pixel width d. Outside 
of this rectangle we assume no source of x-rays, i.e., S (u, v, κ, µ) = 0. Since 

we are considering broad x-ray focal spots, we allow the rectangle to be 
curved in one (as in Figure 6) or both directions.

We use two different arrays to represent the continuum focal 
spot in our calculations: emission finite elements and foxels. Both are 
generally different digitization’s of the same function S (u, v, κ, µ).

We designate the array of emission finite elements as E (ψ, ϕ, g), 
ψ = 1….ψw, ϕ = 1,…ϕh, , where g allows us to calculate the position 
of each emission finite element relative to the (x, y, z) coordinate 
system. The index g also implicitly includes the angle components of 
S (u, v, κ, µ), and E (ψ, ϕ, g) is an integral over an appropriate patch 
of S (u, v, κ, µ). The emission finite elements are used for the forward 
calculation, namely creating an estimate of the projection of U (x, y, z) 
onto the detector array. The centers of the finite elements are used for 



Alvare G (2017) Foxels for high flux, high resolution computed tomography (FoxelCT) using broad x-ray focal spots: theory and two-dimensional fan beam examples

 Volume 1(1): 11-40Radiol Diagn Imaging, 2017          doi: 10.15761/RDI.1000103

a

b

c

d
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f

g

Figure 9. Visible Human Project samples. (a): Each image is a 512x512 pixel png file with 
8-bit (0 to 255) gray values representing a slice of a CT scan of a human male taken before 
the cadaver was frozen and physically sliced [209]. Left column: A CT scan slice of the 
head, labelled in the Visible Human database as c_vm1125 [210]. Surface bumps are cross 
sections of tubing containing a contrast solution. Center column: A thorax CT scan slice 
through the lungs, labelled c_vm1451. Right column: CT scan slice through the abdomen, 
labelled c_vm1671. The head slice thickness is 1 mm and the thorax and abdomen slices 
are 3 mm thick. Note that the standard radiology convention for viewing CT images is 
that the right side of the image corresponds to the patient’s left side, and vice versa. (b): 
Histograms of row (a). (c): The cadaver was embedded in an immobilizing foam, which 
we have here digitally removed around the body and table using the Compositor function 
Quickbrush [211], setting its pixel values to zero, to represent air. These images are used for 
the function U x, y,z( ). (d): In the histograms of row (c) we now have a sharp air peak at 0 
on the left. (e): A brightened version of the images in row (c), using the Autolevel function 
in Compositor, for the sake of making the anatomy more visible. (f): Bitmasks of row (c) 
showing air in black. (g): A bitmask consisting of the cadaver plus the immobilizing foam 
in white. The streaking artefact is from the CT scanner algorithm that was used to produce 
the images in the row (a).

the calculation. We may refer to all of the line segments (rays) from 
all of the focal spot finite element centers to all of the detector element 
centers as the forward x-ray light field.

To represent the projection of finite element (ψ, ϕ, g) onto detector 
pixel DE (α, β, g) we use the function WE (α, β, ψ, ϕ, x, y, z, g). The 
function WE describes a weight between zero and one, which we base 
on a line between the centers of finite element (ψ, ϕ, g) and detector 
pixel (α, β, g). It includes the angular information in S (u, v, κ, µ). The 
line weights WE are generated using the antialiasing Xiaolin Wu line 
algorithm [243] (Figure 10). Our use of the Wu algorithm, instead of 
the standard CT Mueller, Siddon and Joseph algorithms [244-246], 
provides a simple solution to the problem of assigning a weight to the 
intersection of a ray with a voxel [180]. A three-dimensional version is 
available [247].

Therefore, the measurements from which we reconstruct CT 
images are the set of all detector pixel readings:

( ) ( ) ( )
max max max

1 1 1 1 1
, , , , ( , , ) , , , , , , ,

w h x y z

E E
x y z

D g E g U x y z W x y z g
ψ φ

ψ φ

α β ψ φ α β ψ φ
= = = = =

=∑∑ ∑∑∑         (1)

The subscript E on DE is a reminder that the finite elements are used 
in this calculation. Note that Equation 1 includes a sum over all finite 
element rays from the focal spot to the detector pixel, analogous to 
Figure 6c. These concatenated rays form a “compound ray”, an object 
that is no longer a simple line, but rather a bundle of lines. This conforms 
to our generalization of a ray as a “passage”, i.e., any weighted subset of 
voxels, no matter what its shape or position [180]. The use of compound 
rays removed the instabilities inherent in our previous approach [2, 7, 
171], in which we attempted to estimate the ray sum for each individual 
subray from (ψ, ϕ, g) to detector pixel (α, β, g) in an algorithm we called 
SuperMART (Superresolution MART). Nevertheless, while FoxelCT 
directly calculates values for each voxel, it also, in effect, allows each 
subray to acquire its own subray sum. It thus also reconstructs the 
x-ray light field.

Generation of an Image using Foxels

We represent the focal spot as a 2D array of foxels F (a, b, g), a = 
1,…aw, b = 1,…bh . Note that F(a, b, g) is an integral over an appropriate 
patch of S (u, v, K, µ). These are used for the back projection, 
calculating the reconstructed image A (x, y, z) from the detector pixel 
readings DE (α, β, g). In general, it is not a good idea for the rays 
coming from the finite elements to coincide with the rays from 
the foxels. The reason is that when they coincide we create what 
are known as pseudoprojections [181, 248, 249], which can lead to 
deceivingly accurate reconstructions. With foxels we are dealing with 
pseudoprojections when aw = ψw and bh = ϕh, making the rays and 
voxel weights identical for the forward and reverse calculations. Except 
for the pseudoprojection case, the patches of S (u, v, κ, µ) used for 

Figure 10. Two rays drawn using the Wu antialiasing line drawing algorithm [243] and the 
user interface. (a): Left, two Wu rays. (b):On the right is a close-up showing the weights 
assigned to individual pixels along the rays.
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calculating E (ψ, ϕ, g), and F (a, b, g) are different, and so are the rays and 
weights. When a focal spot is treated as if it were a point source, (aw,bh) = (1,1).

To represent the projection of foxel (a,b,g) onto detector pixel 
DF,i (α, β, g ) at iteration i we use the function WF (α, β, ψ, ϕ, x, y, z, 
g). The function WF describes a weight between zero and one, which 
we base on a line between the centers of detector pixel (α, β, g) and 
foxel (a,b,g) and includes the angular information in S (u, v, κ, µ). The 
centers of the foxels are used for the calculation. The subscript F on DF,i 
is a reminder that foxels are used in this calculation. We may refer to 
all of the line segments (rays) from all of the focal spot foxels to all of 
the detector element centers as the reverse x-ray light field. Like WE, WF 
returns values based on the Wu line algorithm.

The MART algorithm works by taking the current estimate for U (x, y, 
z), namely Ai (x, y, z), and calculating the next estimate Ai+1(x, y, z). This is 
done one ray at a time. In our case here, we are dealing with compound 
rays, so the estimate for one compound ray from a detector pixel to all 
foxels contributing to it is:

( ) ( ) ( )
max max max

,
1 1 1 1 1

, , , , ( , , ) , , , , , , ,
w ha b x y z

F i i F
a b x y z

D g F a b g A x y z W x y z gα β α β ψ φ
= = = = =

=∑∑ ∑∑∑
or:                      (2)

( ) ( )
max max max

,
1 1 1 1 1

, , , , , , , , , , , ( , , )
w ha b x y z

F i i
a b x y z

D g w a b x y z g A x y zα β α β ψ φ
= = = = =

=∑∑∑∑∑
where the weight w(a,b,α,β,ψ ,φ, x, y, z, g) = F (a,b, g)WF (α, β,ψ ,φ, x, y, 
z, g). We have formulated and used the following version of the MART 
algorithm:

( )
( ) ( ) ( )

1

,

( , , )
, ,

( , , ) , , , , , , , , , (1 , , , , , , , , , ) ( , , )
, ,

i

E
i i

F i

A x y z
D g

A x y z w a b x y z g w a b x y z g A x y z
D g

α β
α β ψ φ α β ψ φ

α β

+ =
 

+ −  
 

        (3)

The computation is only done when w> 0, i.e., only for those voxels 
that lie along the compound ray. Equation 3 came to mind because 
it only corrects the fraction w of a voxel that is involved in the Wu 
algorithm representation of a ray. Ideally, when all of the voxels in the 
compound ray are processed, we would have:

( ) ( )
max max max

1 1 1 1 1
, , , , , , , , , ( , , ) , ,

w ha b x y z

i E
a b x y z

w a b x y z g A x y z D gα β ψ φ α β
= = = = =

=∑∑∑∑∑            (4)

However, there are a few nuances that have yet to be analyzed 
in the literature. First of all, the original MART algorithm [215] was 
formulated for binary weights, w= 0 or w= 1. It has been generalized 
to include fractional weights by the following methods, which in our 
present notation become:

( )
( )1

,

, ,
( , , ) ( , , )

, ,
E

i i
F i

D g
A x y z A x y z

D g
α β
α β+

 
=   
 

                                          (5)

where the weights only occur in the calculation of DE (α , β, g) and  
DF ,i (α, β, g) [180, 222, 232, 250], and:

( )
( )

( ), , , , , , , , ,

1
,

, ,
( , , ) ( , , )

, ,

w a b x y z g

E
i i

F i

D g
A x y z A x y z

D g

γ α β ψ φ
α β
α β+

 
=   
 

                   (6)

per [221, 223, 225] (and MART3 in [219]), where γ is a relaxation 
constant. Equation 5, summed over all voxels in a given ray, satisfies 
Equation 4, while in general Equation 6 does not. This discrepancy does 
not seem to have been discussed previously.

With compound rays, we have an additional complication: a given 
compound ray may intersect a given voxel more than once. This may 
be seen by rewriting Equation 4 as:

( ) ( )
max max max

1 1 1 1 1
( , , ) , , , , , , , , , , ,

w hx y z a b

i E
x y z a b

A x y z w a b x y z g D gα β ψ φ α β
= = = = =

=∑∑∑ ∑∑              (7)

Insofar as the forward and reverse x-ray light fields coincide, the 
redundancies will have no effect on the results of the calculation. We 
find convergence anyway using Equation 3 for MART with the Xu 
algorithm, but further analysis will be needed to analyze the situation, 
and perhaps come up with yet another way to calculate and/or 
incorporate the weights. One way to think about the situation is that 
some voxels are iterated more often than others, which may prove 
(mathematically) to have little effect on the solution reached upon 
convergence.

All MART algorithms require an initial nonzero image. We start 
with the value A0 (x, y, z) = (Umax +1)/2, where Umax is the maximum 
value possible value for a voxel, 255 in this paper. Our computer 
program terminates once some criterion is met, such as a convergence 
criterion, or it can be run for a specified number of iterations. We 
define stopping criteria below.

Reduction of 3D equations to the 2D fan beam case

We consider reconstruction of a single slice using FoxelCT, as 
sketched in Figure 6:

•• The patient or object is represented as U (x, y, z) with z constant, 
reduced to U (x, y).

•• The detector pixels of width d are arranged in a one-dimensional 
arc requiring a single index: DE (α, β, g) is reduced to DE (α, g). Their 
iterated estimates DF,i (α, β, g) are reduced to DF,i (α, g).

•• The focal spot S(u, v, κ, μ) is one-dimensional, curved in an arc, 
with flux independent of angle, reduced to S(u). In this paper, we 
further reduce S to a constant >0. Its area of fwfh is reduced to an arc 
of length fw, which is taken as an odd multiple of d. Thus, the focal 
spot is a uniform rectangle whose flux is independent of angle.

•• The gantry position g is specified by a single angle of rotation θg, 
g=1,…G of a gantry of radius r (Figure 6a).

•• The emission finite elements are arranged on an arc, reducing   
E (ψ, ϕ, g) to E (ψ, g), Ψ = 1…. Ψw .

•• The foxels are arranged on an arc, reducing F (a, b, g) to F (a, g), 
a = 1,…,aw

•• The reconstructed image A (x, y, z) is reduced to A (x, y).

Selection of 2D fan beam gantry angle order

It is important to consider the order of using the gantry rotation 
angles R = {θg, g = 1,…G} in a MART calculation, as it can affect the 
speed of convergence and the accuracy of image reconstruction [220, 
251-254]. This calculation order can be independent of the order in 
which the angles are chosen for data acquisition, such as consecutive 
for rotating third or fourth generation CT scanners, or arbitrary, for 
scanners with multiple fixed [255], independently addressable x-ray 
sources. Basically, MART works fastest when consecutive angles being 
computed are as close to orthogonal as possible. To approximate this, 
we use a sequence of gantry angles inspired by the Multilevel Scheme 
(MLS) algorithm [251]. The MLS algorithm was originally developed 
for parallel projections. Our fan beam gantry angle order is calculated 
recursively in the following manner. We restrict ourselves to G = 2L 
equally spaced angles over the range [0°, 360° ), where “level” L ≥ 0 is 
an integer:
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1. We start with two mutually perpendicular angles in the string λ = 
{0°, 90°}. Let’s call these “anchor” angles, and set R = λ. 0° is initially 
designated as a “new” anchor angle, and 90° is designated as an 
“old” anchor angle.

2. If the length(R) = G stop else continue.

3. For each new anchor angle θj :
a. Generate a string of 4 angles  and 

concatenate it to the end of R to update jR R← Ω . 
b. After this concatenation designate the anchor angle θj as “old”.

4. Between every consecutive pair of anchor angles in λ intercalate the 
average of the two angles and designate the intercalated angles as 
“new”.

5. Go to step 2.

In step 4 there is some liberty in the order in which the new anchor 
angles are processed. Since each anchor angle generates 4 angles in R, 
we assume that the effect of this order on the convergence would be 
minimal, and thus have programmed them in numerical order. The 
steps generating the first 32 angles are shown in Table 4. A more refined 
algorithm would use the set of angles for the individual rays between 
detector pixels and foxels instead of the gantry angles.

Quality control

The quality of the image produced by each algorithm for iteration 
i can be assessed by comparing the root-mean-square sum of the 
differences between the “unknown” input test image U (x, y, z) and 
any given reconstructed image Ai (x, y, z). We took the inverse of this 
number, so we could achieve a scale that increases with increasing 
image quality:

max max max

1
2

2,
1 1 1max max max max

( , , ) ( , , )1
( )

x y z
i

i
x y z

A x y z U x y zQ
x y z U

−

= = =

  − =     
∑∑∑          (8)

where i=1,,,k and k is the final iteration of the program, as determined 
by a convergence criterion. While this quality measure cannot be used 
with an actual unknown, it gives us a good measure of the overall 
accuracy of the reconstruction algorithm on test pictures U (x, y, z). 
The quality measure Q2,i is based on an L2 norm. We also tried the 
analogous L1 norm quality measure:

max max max
1

1,
1 1 1max max max max

( , , ) ( , , )11000
( )

x y z
i

i
x y z

A x y z U x y z
Q

x y z U

−

= = =

  − 
=      

∑∑∑              (9)

MART is known empirically [215, 222] and mathematically [216, 
222, 223] to maximize the entropy of the reconstructed image, when it 
is defined as:

max max max

1 1 1max max max max max

( , , ) ( , , )1 ln
x y z

i i
i

x y z

A x y z A x y zH
x y z U U= = =

−
= ∑∑∑               (10)

Calculation of the entropy does not depend on knowing the actual 
image U (x, y, z).

Stopping criterion

Iterating through the projections multiple times can refine the 
image, often improving image quality. However, excessive iterations 
of the algorithm can actually lead to worse image quality when there 
is an inconsistency in the simultaneous linear equations being solved 
[180, 181, 198, 248]. Such divergence of image quality with continued 

iterations can also be anticipated in our case, as slightly different sets 
of linear equations (rays) are being used for obtaining the forward 
projection data (Equation 1) and reconstructing images in a reverse 
manner from that data (Equation 2). Our stopping criterion is defined, 
such that we keep iterating through the algorithm until the quality 
score begins to decline, i.e., passes its first peak. Thus, the final iteration 
is defined as the last iteration before the decline in image quality. Our 
computer program allows subsequent iterations, or manual control of 
iterations, so that one may explore the behavior beyond this first peak. 
In some cases, the image quality increases monotonically for many 
iterations, with little improvement in the visual quality of the image. 
In such instances, we manually stop the run and show the final image.

Implementation

Our foxels software program was developed entirely in Java version 
1.8. The program emulates two CT machines: (1) a CT scanner using 
the foxels MART algorithm, and (2) a CT scanner that regards the 
focal spot as a point source for the reverse calculation (though not for the 
forward calculation). The program may be run either using its Graphical 
User Interface (GUI), or in batch mode from the command line.

In the GUI (Figure 11), the user may try out various settings and 
images to see qualitatively the difference between the two machines. 
The command line batch mode can be used to directly generate quality 
scores, for various parameters.

The forward projection sums in Equation 1 are calculated during 
the first iteration, and stored for use in subsequent iterations. If it is 
stopped for any reason, the projection sums are recalculated before 
proceeding, in case any parameters have been changed. Timings 
reported represent the actual run time needed for the reconstruction 
algorithm, not including calculation of the projection sums.

Attempt at optimization of parameters

We have a multidimensional space to explore, even within the 
confines of the gantry configuration we have chosen (Table 3):

1. Φ = fan beam angle (Figure 6a and Figure 8).

2. G = number of gantry angles, evenly spaced over 360°.

3. Stopping criterion, which determines the number of iterations.

4. ψw = number of finite elements used to approximate the focal spot 
as a continuum.

5. aw = number of foxels into which the focal spot is divided for 
reconstruction.

6. fw = focal spot width, measured in units of detector pixel width.

7. d = υ, i.e, detector pixel spacing = voxel spacing.

Rather than explore the whole space, we make the assumption that 
Qn,j (f, ψw, aw), n = 1 or 2 (Equations 9, 10) has a single maximum (i.e., 
is a convex function), which would then also be true of any transect. 
First, as patient dose is directly proportional to the number of views, 
we reduce G from our initial G = 256 gantry angles and see how image 
quality holds up. To maximize the effect of the foxel approach, we start 
at the high focal spot size fhigh. The second task is then to find the plateau 
of Qn,j (fhigh, ψw, aw), versus the number of finite elements ψw, so we can 
settle on a minimal value of ψw, ψmin, as the computing time is heavily 
dependent on ψmin. The third task is to find the peak of Qn,j (fmax, ψmin, aw) 
versus aw, to obtain its peak, amax. We can then explore the effect of 
increasing fw on image quality without and with foxels (Figure 6), 
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Figure 11. User interface. The FoxelCT user interface is shown after selecting the image to reconstruct, with output shown at one iteration (“round”). The input image is converted to gray 
scale if it is a color image. The Bressenham “staircase” algorithm for drawing lines[256] was not explored for representing rays in this paper. Alternate convergence (stopping) criteria are: 
variance method, Q1 and Q2 , but the calculations can be continued after stopping. A log of all the input and output parameters and the current reconstructed image can be output by the SAVE 
command. The PLOT shows the voxel values along a horizontal line through the center of the latest reconstructed image. The SHOW command may be used to display the original input 
image.  However, after clicking SHOW, except for the information in the log, the work done so far is lost. RESET IMAGE deletes the work done so far (except for the log text), allowing a 
start from scratch.  It can be useful when comparing the effects of different parameters on a single image. STOP ends the program with the image that is currently displayed on the screen. That 
image is updated after every iteration, so the progress of the computation can be followed visually. The file name convention for the output we use in this paper is just the parameters in the 
order shown here, namely “Lena 3 3 3 435 57 1 7 W 1” in this example. Note h = aw. In terms of our equations, the values in the first two input rows correspond to .

making the assumptions that ψw = ψmin fw/fmax and aw = amax fw/fmax.

Results
The FoxelCT computer program was run on a Macintosh iMac 

(mid-2014 21.5 inch) with a 1.4 GHz Intel Core i5 processor and 
on a Macintosh iMac (late-2012 27 inch) with a 3.4 GHz Intel Core 
i7 processor with 32 GB 1600 MHz DDR3 memory and an internal 
750GB solid state disk. The computing times are reported for the latter 
computer. Following standard computer science practice, the order of 
magnitude for the computing time scales as

O(r2ΦG max(ψw, aw )/ d). This is verified in Figure 12.

What we have fixed in advance is that all test pictures and patterns 
are 512x512 voxels (voxels rather than pixels, because they represent 
slabs with some thickness), with a gray scale of 0 to 255, and the gantry 
has a radius of 435 voxels ( Figure 8). Along with a fan beam of Φ = 
57°, these parameters are chosen to be representative of contemporary 
CT body scanners (Table 3). We found that the iteration at which the 
quality measures based on the L1 and L2 norms peaked were sometimes 
the same, but sometimes quite different. We ran FoxelCT on a few test 
patterns to check its performance while varying its input parameters:

1. Effect of reducing the angle of the fan beam Φ (Figure 13). Result: 
Φ =57° reasonably reconstructs an image except at the margins 
that are sometimes outside of the fan beam (Figure 8).

Table 4. MLS-like algorithm for generating the order for the gantry angles in a MART calculation. At each recursive step the new anchor angles are in bold. The last row shows the first 32 
angles, in order, generated by our algorithm. Angles are specified in degrees.
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Figure 12. Actual computing time versus order of magnitude estimate. This plot of run 
time estimated as being proportional to a constant times ( )( )2 max , /w wO r G a dψΦ is shown. The 
proportionality constant is 1.1x10-7 with Φ  measured in degrees. The outliers are due to 
the time to calculate the projection sums at the first iteration. This plot is created from a 
sampling of our runs. The longest run we made, with file name L20 = “Lena 513 1539 439 
435 57 1 7 W 30”, took 2200 seconds per iteration.

2. Effect of the number of views G with fan beam angle Φ =57° (Figure 
14). Result: the reconstruction holds up well at G=128 or more 
views. We chose G=256 views to be close to the common industry 
standard of 360 views.

3. Effect of the number of iterations. It became clear that the 
correlation between our image quality measures and the visual 
impression of quality of the reconstruction was not high (Figure 
15). For this reason, we did not try to use the entropy as a proxy 
measure of image quality. As it is not our purpose here to find the 
best image quality measure, especially because it may be image 
and parameter dependent, we allowed our visual impression to 
override the image quality measures in choosing which iteration 
to illustrate.

4. Effect of varying the number of finite elements into which the focal 
spot is divided ( Figure 16). We tested a focal spot width of fw= 21 
voxels wide, i.e., fw = 21d, fixing the number of foxels at aw = 1. 
From this we decided to use 3 finite elements per voxel of the focal 
spot width, i.e., a finite element width of d / 3.

5. Effect of increasing the number of foxels. Again, we used a focal 
spot width of fw= 21 voxels, with 63 finite elements, and varied 
the number of foxels. The image quality at iteration 30 increases 
up until 18 foxels, after which it collapses completely with 
further iteration (Figure 17). This behavior may be related to an 
analogous improvement with and then collapse of Power MART 
at a critical value of an exponent [221, 225]. This led to the ratio 
aw = (6 / 7) fw, which we shall assume is near optimal for all subsequent 
reconstructions. It is consistent with the observation that “…over-
aggressive model parameters introduce reconstruction artifacts 
and degrade resolution” [185].

6. Effect of increasing the focal spot size regarded as a point source 
versus using foxels. We next considered image quality as the focal 
spot width fw is increased from 1 to 513 = 29 + 1 voxel widths. The 
latter equals the width of the image being reconstructed. Image 
quality is severely reduced from fw = 17 = 24+ 1 if the focal spot 
is treated as a point source in the CT computation. However, if 
foxels are used, the focal spot size can be increased roughly by a 
factor of 4 while retaining equivalent visual image quality of the 
face of Lena (Figure 18). Visually, the reconstruction with foxels 
remains recognizable as a face all the way to fw = 513, i.e., with a 
focal “spot” as wide as the image being reconstructed. While the 
image quality factors are sustained to larger focal spot sizes (Figure 
18 and Figure 19), they cannot be taken as reliable measures of 
visual image quality.

Having selected a gantry configuration, number of views (gantry 
angles), number of iterations to reasonable convergence, minimum 
number of finite elements per unit width of the focal spot, and a 
maximum threshold for the usefulness of foxels aw = (6/7) fw, we applied 
these parameters to sections of the Visible Human Male (Figure 20, 
Figure 21 and Figure 22). Two observations are apparent: 1) the fine 
detail on the head CT (Figure 20 and Figure 23) does not permit as 
great an increase in focal spot width fw as for the Lena test image; 2) 
approximation of the focal spot as a point source not only results in poorer 
image quality, but also distorts the geometry of the skull.

Discussion
Our results, summarized in Figure 19, Figure 20D, Figure 21D and 

Figure 22D, show considerable improvement for the use of foxels over 
the point source approximation, warranting the use of foxels in any 
x-ray imaging situation. These images are suboptimal, in that we used the 
convexity of the parameter space to get somewhere near the optimal peak, 
but with further exploration via simulation that peak may be discoverable. 
It is possible that peak performance of foxels is image dependent.

We confined our simulation to a rectangular focal spot of uniform 
flux and did not consider that different parts of the x-ray focal spot may 
have different intensities (Figure 7). In other words, we always used E = 
F = 1 in Equations 1, 2 and 3. As it has been shown that the projection 
images of small objects are distorted by the pattern of intensity 
variations in the focal spot [28], with inhomogeneity increasing with 
tube current [9], any means of improving the uniformity of focal spots 
is likely to improve imaging. However, the use of foxels could directly 
correct for nonuniformity. The effect of focal spot nonuniformity on 
FoxelCT reconstructions has yet to be explored.

Foxels are applicable to all projection radiography, classical 
tomography in digital form, tomosynthesis, and CT in all its variations 
of gantries, including inverse geometries, and should improve imaging 
in every case. However, one may ask if there is an optimal foxel solution 
to the 3D imaging problem. For an array of point sources of x-rays, 
optimality has recently been claimed for a particular tetrahedral 
configuration for cone-beam CT [262]. The authors invoke notions 
of four flexible detectors that would be wrapped over a spherical cap 
forming the intersection of a cone beam emanating from one of the 
four tetrahedrally arranged point sources (Figure 23). As we have 
illustrated there, a smaller cap representing a broad focal spot could 
be added, which could be divided into foxels. This is a 3D version 
of Figure 6. The spherical chamber is not unprecedented. Michael 
J. Neumann (personal communication, around 1970), brother of 
John von Neumann [263], proposed a spherical walk-in chamber for 
positron tomography with detectors over the whole inner surface. 
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Figure 13. Effect of reducing the fan beam angleΦ . A: T = a 512x512 voxel binary test pattern “Honeycomb”. The reconstructed images show that the center of the image is reconstructed 
well, with FoxelCT acting as a region of interest algorithm [227, 257, 258]. Focal spot width fw = 3 voxels represented by 3 finite elements, reconstructed with 3 foxels using 8 levels (256 
equally spaced gantry angles). “50+” means 50 iterations with the + sign indicating that convergence had not been attained yet and the run was stopped manually. “50” without a plus sign 
would mean that the computer program stopped automatically at the peak Q1,50 or Q2,50 , whichever norm is designated. B: T = a 512x512 voxel halftone test pattern “Lena” [259-261], 
reconstructed with the same parameters. Note that the inner circle (Figure 8) within which greater accuracy is achieved is now apparent. The reconstructions at Φ  =1o confirm that the coded 
geometry of the fan beams is properly centered. File names under each reconstructed image correspond to the input parameters in the order shown in Figure 11.
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Figure 14. A: Effect of the number of views. Here the fan beam angle is held constant at Φ = 57o, and the number of levels L is reduced by powers of 2. T = 512x512 binary test pattern, a 
Quick Read, QR code. Reconstructions are then with 512 down to 4 evenly spaced gantry angles (views). Focal spot width fw= 3 voxels represented by 3 finite elements, foxel width fw= 1 
voxel. With one exception (16 views) the peak for the L2  norm came at fewer iterations than the L1  norm. The images shown here are for the L2  norm stopping criterion. Visually further 
iterations made no difference. A + sign indicates that a peak value hadn’t been reached at the specified number of iterations. B: Image quality versus number of views or gantry positions 
equally spaced over 360o shows only a small decline for 256 views, which we used for subsequent simulations.
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Figure 15. A: Effect of the number of iterations on image quality. For all reconstructions, here we set focal spot width fw = 21 voxels, wψ  = 5 finite elements, reconstructed with aw  = 11 
foxels. The number of iterations i is varied. The fan beam is Φ= 57o and G =  256 views are used. Both of the L1  and L2  based quality measures Q1,i  and Q2,i peaked at iteration i = 2. Their 
values are listed respectively for each iteration. While this is an unlikely set of parameters, with w wa ψ> , it illustrates that simple image quality measures cannot be used without visually 
checking on them. B: Checking the images against the graph, we have the counterintuitive conclusion that the visual quality increases while the quantitative quality measures decline. 
Squares are 100Q1,i  and triangles are Q2,i  versus iteration i.
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Figure 16. Effect of the number of finite elements wψ  used to represent a focal spot. A: For all reconstructions, here we set focal spot width fw = 21 voxels, reconstructed with aw = 1foxel. 
Thus, a wide focal spot is treated as if it were a point source. The number of finite elements wψ  used to represent the focal spot is varied. The fan beam is Φ =  57o and G = 256 views are 
used. The first peak iterations for the L1  and L2 based quality measures are given. Given the experience of Figure 15, all reconstructions are shown at 30 iterations. B: As real focal spots are 
a continuum, the image for 63wψ =  is the most realistic, which represents 3 finite elements per voxel width of the focal spot fw . The near perfection of the reconstruction with 1wψ =  is an 
artefact of a zero width of the finite element representation in this case, since we only use the center point of each finite element in calculating the projection sums. It is also a pseudoprojection 
situation, as the rays used for the projection sums and reconstruction are identical. Diamonds are 100Q1,i and squares are Q2,i.
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Figure 17. Effect of increasing the number of foxels. A: Here we use a focal spot width of fw = 21 voxels, with 3 finite elements per voxel, i.e., 63wψ = . The number of foxels h is varied, 
and all reconstructions are shown at 30 iterations. The first two Q’s give the iterations at which they first peaked, followed by their values at iteration 30. At aw = 1 this broad focal spot is 
treated as if it were a point source. We can see that improvement in image quality over this current practice, as measured at iteration 30, peaks versus number of foxels at aw = 18 . The peak 
image quality as visually assessed seems to be at aw = 18  or aw = 19 . Image quality visibly collapses starting at aw = 20and a few samples at higher values of aw  suggest that it does not 
return. One clue to this behavior may be that, for instance, for aw = 22, there were second peaks versus iteration at the 4th iteration. B,C: In this set of simulations, the quantitative quality 
measures correspond to the visual quality. The diamonds show each Q value at its peak iteration and the squares show the Q values at the 30th iteration. The sudden collapse of the image is 
apparent. This critical number of foxels for the given focal spot width fw may be some kind of phase transition.



Alvare G (2017) Foxels for high flux, high resolution computed tomography (FoxelCT) using broad x-ray focal spots: theory and two-dimensional fan beam examples

 Volume 1(1): 21-40Radiol Diagn Imaging, 2017          doi: 10.15761/RDI.1000103

Lena Focal spot represented 
by a single point  

Focal spot represented 
by foxels 

T 

 

 

 
L1 Lena L2 Lena 1 3 1 435 57 1 7 W 30 

 

 

 

 
L3 Lena 3 9 1 435 57 1 7 W 30 L4 Lena 3 9 2 435 57 1 7 W 30 

 

 

 

 
L5 Lena 5 15 1 435 57 1 7 W 30 L6 Lena 5 15 4 435 57 1 7 W 30 

 

 

 

 
L7 Lena 9 27 1 435 57 1 7 W 30 L8 Lena 9 27 7 435 57 1 7 W 30 

 

 

 

 
L9 Lena 17 51 1 435 57 1 7 W 30 L10 Lena 17 51 14 435 57 1 7 W 30 

 
Lena Focal spot represented 

by a single point  
Focal spot represented 

by foxels 

 

 

 

 
L11 Lena 33 99 1 435 57 1 7 W 30 L12 Lena 33 99 28 435 57 1 7 W 30 

 

 

 

 
L13 Lena 65 195 1 435 57 1 7 W 

30 
L14 Lena 65 195 55 435 57 1 7 W 

30 

 

 

 

 
L15 Lena 129 387 1 435 57 1 7 W 

30 
L16 Lena 129 387 110 435 57 1 7 

W 30 

 

 

 

 
L17 Lena 257 771 1 435 57 1 7 W 

30 
L18 Lena 257 771 220 435 57 1 7 

W 30 

    
L19 Lena 513 1539 1 435 57 1 7 

W 30 
L20 Lena 513 1539 439 435 57 1 7 

W 30 

 B

 

C

 

 
A cont’d

 
A



Alvare G (2017) Foxels for high flux, high resolution computed tomography (FoxelCT) using broad x-ray focal spots: theory and two-dimensional fan beam examples

 Volume 1(1): 22-40Radiol Diagn Imaging, 2017          doi: 10.15761/RDI.1000103

Figure 18. Effect of increasing the focal spot size regarded as a point source versus using foxels, for Lena test image. A: Left column: point source. Right column: foxel source. Here we 
use 3 finite elements per voxel width of the focal spot, i.e., 3w wfψ = . Images are at 30 iterations. The focal spot width fwis increased in powers of 2, with 1 added to get an odd number, so 
that the fan beam has a central ray. The number of foxels aw is proportional to the focal spot width. The peak image quality for a focal spot width of fw = 21 was reached with 18 foxels in 
Figure 17. Here we maintain this ratio: [ ] 618 / 21

7w w wa f f = =   
, where the brackets indicate truncation to the nearest integer. For wide focal spots, foxels lead to substantially greater image 

quality than the point source approximation (consistent with [179]). Wide focal spots also generate a recognizable image at focal spot sizes so large that they are as wide as the image itself. 
B,C: The two graphs of image quality measures Q1,30  and Q2,30  show that the quality is always higher when foxels are used (squares) than approximation of the focal spot as a point source 
(diamonds). However, these measures do not reflect visual image quality. Note that 0 on the abscissa corresponds to a point source.
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Figure 19. The 512x512 voxel test pattern Lena shows that image quality holds up much better as the focal spot width fw is increased, here up to 17 times the detector pixel width, than 
reconstructions approximating the focal spot as a point source. T = input test pattern. Details in Figure 18.
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Figure 20. Effect of increasing the focal spot size regarded as a point source versus using foxels for Head CT. A: For caption details see Figure 18. B,C: Graphs show the decline of 
quantitative image quality as the focal spot size is increased, but do not distinguish the point source approximation from reconstructions made with foxels. D: To enhance the contrast, 
we have also shown the same reconstructions processed via the Compositor Autolevel function.
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Figure 21. Effect of increasing the focal spot size regarded as a point source versus using foxels for Thorax CT. For caption details see Figure 18 and Figure 20. In this case the quantitative 
quality measures do distinguish the point source approximation from the use of foxels.

D cont'd



Alvare G (2017) Foxels for high flux, high resolution computed tomography (FoxelCT) using broad x-ray focal spots: theory and two-dimensional fan beam examples

 Volume 1(1): 30-40Radiol Diagn Imaging, 2017          doi: 10.15761/RDI.1000103

A 
Abdome
n 

Focal spot represented 
by a single point  

Focal spot represented 
by  foxels 

T 

 

 

 
A1 Abdomen A2 Abdomen 1 3 1 435 57 1 7 W 7 

 

 

 

 
A3 Abdomen 3 9 1 435 57 1 7 W 30 A4 Abdomen 3 9 2 435 57 1 7 W 30r 

 

 

 

 
A5 Abdomen 5 15 1 435 57 1 7 W 30 A6 Abdomen 5 15 4 435 57 1 7 W 30 

 

 

 

 
A7 Abdomen 9 27 1 435 57 1 7 W 30 A8 Abdomen 9 27 7 435 57 1 7 W 30 

 

 

 

 
A9 Abdomen 17 51 1 435 57 1 7 W 

30 
A10 Abdomen 17 51 14 435 57 1 7 W 

30 

A cont’d 
Abdome

n

 

Focal spot represented 
by a single point 

 

Focal spot represented 
by  foxels 

 

 

 

 
A11 Abdomen 33 99 1 435 57 1 7 W 

30 
A12 Abdomen 33 99 28 435 57 1 7 W 

30 

B 

 

C 

 
 

D 
Abdomen Focal spot represented 

by a single point 
Contrast 

Enhanced

 

Focal spot represented 
by  foxels 

T 

 

 

 
A1 Abdomen A2 Abdomen 1 3 1 435 57 1 7 W 7 

 

 

 

 
A3 Abdomen 3 9 1 435 57 1 7 W 30 A4 Abdomen 3 9 2 435 57 1 7 W 30r 

 
D cont’d 
Abdomen

 

Focal spot represented 
by a single point 

Contrast 
Enhance

d

 

Focal spot represented 
by  foxels 

 

 

 

 
A5 Abdomen 5 15 1 435 57 1 7 W 30 A6 Abdomen 5 15 4 435 57 1 7 W 30 

 

 

 

 
A7 Abdomen 9 27 1 435 57 1 7 W 30 A8 Abdomen 9 27 7 435 57 1 7 W 30 

 

 

 

 
A9 Abdomen 17 51 1 435 57 1 7 W 

30 
A10 Abdomen 17 51 14 435 57 1 7 W 

30 

 

 

 

 
A11 Abdomen 33 99 1 435 57 1 7 W 

30 
A12 Abdomen 33 99 28 435 57 1 7 W 

30 

 

n



Alvare G (2017) Foxels for high flux, high resolution computed tomography (FoxelCT) using broad x-ray focal spots: theory and two-dimensional fan beam examples

 Volume 1(1): 31-40Radiol Diagn Imaging, 2017          doi: 10.15761/RDI.1000103

A 
Abdome
n 

Focal spot represented 
by a single point  

Focal spot represented 
by  foxels 

T 

 

 

 
A1 Abdomen A2 Abdomen 1 3 1 435 57 1 7 W 7 

 

 

 

 
A3 Abdomen 3 9 1 435 57 1 7 W 30 A4 Abdomen 3 9 2 435 57 1 7 W 30r 

 

 

 

 
A5 Abdomen 5 15 1 435 57 1 7 W 30 A6 Abdomen 5 15 4 435 57 1 7 W 30 

 

 

 

 
A7 Abdomen 9 27 1 435 57 1 7 W 30 A8 Abdomen 9 27 7 435 57 1 7 W 30 

 

 

 

 
A9 Abdomen 17 51 1 435 57 1 7 W 

30 
A10 Abdomen 17 51 14 435 57 1 7 W 

30 

A cont’d 
Abdome

n

 

Focal spot represented 
by a single point 

 

Focal spot represented 
by  foxels 

 

 

 

 
A11 Abdomen 33 99 1 435 57 1 7 W 

30 
A12 Abdomen 33 99 28 435 57 1 7 W 

30 

B 

 

C 

 
 

D 
Abdomen Focal spot represented 

by a single point 
Contrast 

Enhanced

 

Focal spot represented 
by  foxels 

T 

 

 

 
A1 Abdomen A2 Abdomen 1 3 1 435 57 1 7 W 7 

 

 

 

 
A3 Abdomen 3 9 1 435 57 1 7 W 30 A4 Abdomen 3 9 2 435 57 1 7 W 30r 

 
D cont’d 
Abdomen

 

Focal spot represented 
by a single point 

Contrast 
Enhance

d

 

Focal spot represented 
by  foxels 

 

 

 

 
A5 Abdomen 5 15 1 435 57 1 7 W 30 A6 Abdomen 5 15 4 435 57 1 7 W 30 

 

 

 

 
A7 Abdomen 9 27 1 435 57 1 7 W 30 A8 Abdomen 9 27 7 435 57 1 7 W 30 

 

 

 

 
A9 Abdomen 17 51 1 435 57 1 7 W 

30 
A10 Abdomen 17 51 14 435 57 1 7 W 

30 

 

 

 

 
A11 Abdomen 33 99 1 435 57 1 7 W 

30 
A12 Abdomen 33 99 28 435 57 1 7 W 

30 

 



Alvare G (2017) Foxels for high flux, high resolution computed tomography (FoxelCT) using broad x-ray focal spots: theory and two-dimensional fan beam examples

 Volume 1(1): 32-40Radiol Diagn Imaging, 2017          doi: 10.15761/RDI.1000103

Figure 22. Effect of increasing the focal spot size regarded as a point source versus using foxels for Abdomen CT. For caption details see Figure 18 and Figure 21.
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Figure 23. The tetrahedron scanner. In an optimized tetrahedron scanner, each of the four x-ray sources located on the outer sphere is collimated to a cone of half angle 27o22’. (a) a single 
cone. (b) all 4 cones shown overlapped, each in a different color. From [262] with kind permission of Ivan B. Ye and SPIE Publications. The inner sphere, which is scanned by all 4 cones, 
has a radius of 46.0% of the radius of the outer sphere. The authors propose that the four spherical caps defined by the intersections of the cones with the surface of the outer sphere would 
be covered with flexible electronics containing the detectors. We add the notion that the apex of the cone could be extended from a point to a spherical cap (region with yellow stars added) 
representing a broad x-ray source that could be virtually represented as an array of foxels.

Rather than coming from a standard x-ray tube, the “focal spot” could 
be a large area x-ray source such as is used in decontamination devices 
and the study of electromagnetic pulse effects [97, 114, 137, 264-266]. 
Flying spot x-ray sources, such as are used in reverse geometry x-ray 
imaging [267], could possibly provide a moving large area source by 
defocussing the electron beam.

We have taken advantage of a presumed convexity of the 
parameter space to obtain what are thereby undoubtedly suboptimal, 
but provocative results. More massive computations to search the 
parameter space for actual maxima of visual and quantitative measures 
of image quality, and to what extent they are object dependent, are 
warranted.

We decided to do our comparisons by visual criteria using a well 
known, standard test picture of a young woman, Lena, widely used in 
computer science [259, 261]. Human perception of image quality of 
a human face [268] takes into account many factors that are hard to 
appreciate in quantitative test patterns and quantitative image quality 
measures. We have already shown that standard CT algorithms, 
including MART, especially in limited view situations, select what can 
be the wrong image from the infinite space of solutions to CT equations 
[2, 235, 269]. Others have shown how compressive sensing algorithms 
may improve the selection of solutions of underdetermined CT 
equations [270-274] such as Equation 2. Human guided reconstruction 
of CT images can exceed [163] the accomplishments of compressive 
sensing CT. For limited view problems, deconvolution of the point 
spread function of FoxelCT might further improve imaging [269]. 
There are thus many opportunities to improve upon and optimize the 
foxel approach.

We reached the opposite conclusion of another paper: “…that RM 
[ray modelling] is not necessary in clinical CT to achieve resolution 

recovery” [125]. We propose the use of large focal spots, rather than 
considering them “exaggerated” or “unrealistic” [125]. The major 
differences in our approaches are that these authors fix the detector 
size at d=1.3 mm, whereas we argue for much smaller detectors for 
clinical CT, emphasizing that the ratio of focal spot width fw to detector 
pixel width should be greatly increased, along with the ratio of focal 
spot width to gantry diameter. They also approximate their fw = 0.5 
mm focal spot by a Gaussian, whereas we use a rectangular emission 
distribution, meaning that their effective focal spots are narrower than 
those we simulate. Given that the ratio fw /d = 0.38 or less, even with 
their foxel-like simulation, they are simulating what is very close to a 
point source, which may explain why “no visual improvement could be 
achieved”. Their “needle beams”, which correspond to rays from a foxel 
to a detector pixel, are averaged, whereas we concatenate them into a 
compound ray that permits different reconstructed values along each 
“needle beam”. We distinguish a finite element representation of the 
focal spot from the foxels used for reconstruction. Finally, they accept 
the photon noise limitations per detector measurement, whereas we 
chose to simulate the ideal case, leaving noise considerations to further 
work. We think this is reasonable, since there are other ways to reduce 
noise, such as lowering the number of views while increasing the dose 
per view, as in CT mammography [275, 276]. This will be especially 
important for body CT scanners with fixed arrays of x-ray sources (and 
no moving parts, cf. the Hula-Hoop CT scanner [277]), which may be 
limited to far fewer than the industry standard of 360 views or more for 
a rotating gantry.

It may be objected that FoxelCT is a computationally expensive 
algorithm that, if implemented, could reduce patient throughput. It 
took about 15 years before the issue of dose reduction in CT was taken 
seriously (Figure 24). This was an example of a trade-off between patient 
safety and image quality. Now we are faced with the further trade-off 
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between image quality (usually presumed to be a measure of diagnostic 
accuracy) and the computer time needed to achieve higher image 
quality [2, 186, 201] (Figure 12), especially because faster scanners [4, 
274, 278] mean less time to do the computing. Certainly Moore’s Law 
applies here [279, 280], as well as in other domains [281-283], as we 
have not yet reached limits to computer speed. Projecting 15 years they 
might be 215 = 32,768 times faster. Thus, in planning new CT scanners, 
diagnostic quality should not be sacrificed because of anticipated long 
computing times. The computers will catch up. For example, each slice 
could be run in a different thread in a multicore computer [284, 285], 
and CT algorithms that take advantage of parallel computers [2, 286-
290] are available.

Conclusions
Our purely geometric approach places an upper bound on what is 

achievable with foxels, and thus provides a goal to guide further efforts 
[278]. The use of foxels (focal spot pixels) in a computed tomography 
algorithm allows us to increase the ratio of the focal spot width to 
detector pixel width substantially, by a visually estimated factor of 
around 2 to 4, without loss of resolution compared to approximating 
the focal spot as a point source. If this result carries over to three 
dimensional CT, the area of the focal spot could thereby increase by 
a factor of 4 to 16, with a corresponding increase in x-ray flux. The 
standard approximation of the focal spot as a point source not only 
produces worse images than foxels in terms of image quality measures, 
but also distorts the anatomy. One should presume that some such 
distortion is present even for small focal spots approximated as a point 
source. Foxels allow better trade-offs in terms of scanning speed, patient 
dose, and spatial resolution than hitherto possible. Foxels should also 
enhance the resolution of digital projection radiology imaging, by 
correcting for the penumbra effect.

A new method for calculating the focal spot image as seen from any 
position in the 3D space between the focal spot and the detector array 
[292] could make FoxelCT quite practical.

For any given focal spot size, approximating it as a point is 
always worse than using foxels. Therefore, existing scanners could be 
immediately enhanced in image quality via incorporation of foxels 
in their software. Future scanners could take advantage of foxels to 
increase the ratio of focal spot size to detector pixel size, via bigger focal 
spots and/or smaller detector pixels.
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