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Abstract
Medical treatment using high-voltage electric potential (HELP) devices to generate an electric field (EF) is an alternative therapy commonly used in Japan. However, 
the mechanisms underlying potential health benefits of this therapy are still unclear. Therefore, we investigated the effect of HELP exposure (9 kV/electrode+9 kV/
electrode, 30 min) on several cytokines and hormones using enzyme-linked immunosorbent assays in plasma samples obtained from healthy human subjects before 
and after a single treatment session. Immunoreactive interleukin (IL)-1β and IL-6 levels were significantly downregulated following HELP exposure. Under these 
treatment conditions, HELP exposure did not exert on immunoreactive IL-10, IL-18, transforming growth factor-beta 1 (TGF-β1), tumor necrosis factor-alpha 
(TNF-α) adrenaline, serotonin, histamine, neuropeptide Y, somatostatin, insulin, or dehydroepiandrosterone sulfate (DHEAS) levels. The activation of transient 
receptor potential melastatin 8 (TRPM8) induces the suppression of the levels of inflammatory markers. Therefore, we further examined the in silico docking 
simulation of lysoPC-22:4, lysoPE-20:4, and lysoPE-22:6 with TRPM8 using a homology model. The binding energies were -10.8, -10.4, and -11.4 kcal/mol for 
lysoPC-22:4, lysoPE-20:4, and lysoPE-22:6, respectively. Our findings provide new insights into the molecular mechanisms underlying pain control and sleep quality 
alleviation following EF therapy. 

Abbreviations: CRP: C-reactive protein; DHEAS: dehydroepian-
drosterone sulfate; EF: electric field; HELP: high-voltage electric po-
tential; HODE: hydroxyoctadecadienoic acid; IL: interleukin; lysoPC: 
lysophosphatidylcholine; lysoPC-22:4: (2-{[(2R)-3-[(7Z,10Z,13Z,16Z)-
docosa-7,10,13,16-tetraenoyloxy]-2-hydropropyl phosphonato]oxy}
ethyl)trimethylazanium; lysoPE: lysophosphatidylethanolamine; ly-
soPE-22:6: (2-aminoethoxy)[(2R)-2-[(4Z, 7Z, 10Z, 13Z, 16Z, 19Z)-
docosa-4,7,10,13,16-hexaenoyloxy]-3-hydroxypropoxy]phosphinic 
acid; lysoPE-20:4: (2-aminoethoxy) [(2R)-2-hydroxy-3-[(5Z, 8Z, 11Z, 
14Z)-icosa-5,8,11,14-tetraenoyloxy] propoxy] phosphinic acid; OEA: 
Oleoylethanolamide; TGF-β: transforming growth factor beta; TNF-α: 
tumor necrosis factor alpha; TRPM8: transient receptor potential 
melastatin 8; TRPV1: transient receptor potential vanilloid 1.

Introduction
A therapeutic device exposing the human body to high-voltage 

electric potential (HELP) has been approved by the Ministry of Health, 
Labour and Welfare in Japan [1-19]. High-voltage electric field (EF) 
therapy is reported to be an effective treatment for shoulder stiffness, 
headache, insomnia, and chronic constipation [1-20]. Although 
EF therapy was discovered more than 80 years ago, the molecular 
mechanisms associated with its health benefits remain elusive. 
Altogether, the results of these studies suggest that HELP exposure 
may be an alternative therapy for several conditions. Our previous 
attempts to identify biomarker induced by HELP exposure using 
plasma metabolomics and lipidomics have led to the detection of lipid-

derived signaling molecules such as 3-hydroxybutyrate (3-HBA), cis-
8,11,14-eicosatrienoic acid, 9-hydroxyoctadecadienoic acid (9-HODE), 
13-hydroxyoctadecadienoic acid (13-HODE), oleoylethanolamide 
(OEA), lysophosphatidylethanolamine (lysoPE)-20:4, and lysoPE-22:6 
[21-25]. Endogenous lipid-derived signaling molecules have been 
suggested as candidate molecules, representing the interface between 
symptoms and electroceutical target proteins [21-26]. A recent 
study conducted by Smani et al. reported that pretreatment with 
lysophosphatidylcholine (lysoPC) induced decreases in the levels of 
pro-inflammatory cytokines in the murine model of peritoneal sepsis 
caused by Acinetobacter baumannii [27]. In our previous study, we 
observed HELP exposure-induced upregulation of lysoPC-22:4 levels 
in the plasma of healthy individuals [28]. Therefore, we hypothesized 
that the increased plasma lysoPC-22:4 levels following EF exposure 
may be linked to changes in pro-inflammatory cytokines, including 
interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α). In 
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the present study, we report that the immunoreactive levels of IL-1β 
and IL-6 may be downregulated by HELP treatment (9 kV/electrode+9 
kV/electrode, 30 min). In addition, we conducted a binding study to 
explore the interactions between lysoPC-22:4 and a homology model of 
transient receptor potential melastatin 8 (TRPM8) using the template 
structure (PDB ID 6BPQ).

Materials and methods
EF exposure

The system used for the EF exposure has been previously described 
[1-25,28]. The EF system was equipped with a transformer, a seat, and 
two insulator-covered electrodes. One electrode was placed on a floor 
plate on which the subject’s feet were located, and the other electrode 
was placed above the subject’s head. An EF generated by the HELP 
apparatus (Healthtron PRO-18T; Hakuju Institute for Health Science 
Co., Ltd., Tokyo, Japan) was uniformly created by transforming a 50-
Hz alternating current at 9 kV/electrode+9 kV/electrode. The safety of 
this system for human use was confirmed by the Japanese government 
in 1963. 

Subjects
Sixteen healthy adults (7 males and 9 females; mean age, 44.1 ± 

1.7 years; body mass index [BMI], 22.5 ± 1.3 kg/m2) participated in 
experiment 1 (exposure condition: 9 kV/electrode+9 kV/electrode, 30 
min). Twenty-five healthy adults (9 males and 16 females; mean age, 
46.1 ± 1.1 years; BMI, 22.2 ± 0.5 kg/m2) participated in experiment 
2 (exposure condition: 9 kV/electrode+9 kV/electrode, 30 min). All 
experiments were performed in the morning, and all participants 
signed an informed consent form after receiving verbal and written 
information regarding the study. All experiments were conducted in 
accordance with the Declaration of Helsinki, and the study protocol 
was approved by the human ethics committee of Hakuju Institute for 
Health Science Co., Ltd. (Tokyo, Japan). 

Plasma preparation

Blood samples were collected using vacutainer tubes coated with 
ethylenediaminetetraacetic acid (VP-NA070K; Terumo Corporation, 
Tokyo, Japan) and immediately centrifuged at 800 x g for 5 min to 
separate the plasma from other cellular materials. The plasma was 
subsequently transferred to a fresh Eppendorf tube and stored at -80℃ 
until processing.

Enzyme-linked immunosorbent assay (ELISA) 

The plasma immunoreactive levels of IL-1β, IL-6, IL-10, IL-18, 
TGF-β1, TNF-α, adrenaline, dehydroepiandrosterone sulfate (DHEAS), 
histamine, insulin, neuropeptide Y, serotonin, and somatostatin were 
measured using a human IL-1β, IL-6, IL-10, TGF-β1 or TNF-α ELISA 
kit (R&D systems, Minneapolis, MN, USA), a human IL-18 ELISA kit 
(Medical & Biological Laboratories, Nagoya, Japan), a human adrenaline 
and DHEAS ELISA kit (Lifespan Biosciences, Seattle, WA, USA), a 
human histamine ELISA kit (Bertin Pharma, Montigny le Bretonneux, 
France), a human insulin ELISA kit (Mercodia, Uppsala, Sweden), a 
human neuropeptide Y ELISA kit (Cloud-Clone, Houston, TX, USA), 
a human serotonin ELISA kit (Enzo Life Sciences, Farmingdale, NY, 
USA), or a human somatostatin ELISA kit (RayBiotech, Norcross, GA, 
USA). 

Homology modeling and docking simulation

We used Q7Z2W7.fasta registered in UniProt to obtain the sequence 
of human TRPM8 (hTRPM8). The three-dimentional structure (6BPQ; 

Protein Data Bank Japan) was used as a template structure. The best 
docking score was chosen from the docking calculation between icilin 
(an agonist of TRPM8) and a homology model. The docking study 
of lysoPC-22:4 binding to the target protein of the hTRPM8 model 
structure was performed using the AutoDock Vina docking software 
(Dr. Oleg Trott, The Scripps Research Institute, CA, USA) [29]. 
The docking experiment was performed five times and yielded 100 
candidate conformations.

Statistical analysis

Data were analyzed using Welch’s t-test. A probability (p) value < 
0.05 was considered statistically significant.

Results
Effect of HELP exposure on immunoreactive cytokines in the 
plasma of healthy individuals

We examined the effect of HELP exposure (9 kV/electrode+9 kV/
electrode) for 30 min on immunoreactive cytokines in the plasma of 
healthy individuals at multiple time points (Figure 1). The levels of 
immunoreactive IL-1β were significantly downregulated at the 0time 
and 30-min time point after HELP exposure compared with those 
observed before the exposure (IL-1β-After 0time: 0.66-fold, p=0.00005; 
IL-1β-After 30-min: 0.83-fold, p=0.025). Moreover, the levels of 
immunoreactive IL-6 were significantly downregulated at the 30-min 
time point after HELP exposure compared with those observed before 
the exposure (IL-6: 0.68-fold, p=0.039). Under these conditions, HELP 
exposure did not affect the levels of immunoreactive IL-10, IL-18, 
TNF-α, or TGF-β1 (Figure 1c-f). 

Effect of HELP exposure on immunoreactive hormones in the 
plasma of healthy individuals

We examined the effect of HELP exposure (9 kV/electrode+9 kV/
electrode) for 30 min on immunoreactive hormones in the plasma 
of healthy individuals to determine the specificity (Table 1). HELP 
exposure did not affect the levels of immunoreactive adrenaline, 
DHEAS, histamine, insulin, neuropeptide Y, serotonin, or somatostatin. 

Docking simulation of lysoPC-22:4, lysoPE-20:4, and 
lysoPE-22:6 with a homology model of TRPM8 

Acute EF exposure induces a notable increase in the levels of 
lysoPC-22:4 in the plasma of healthy subjects [28]. LysoPC-16:0 activates 
TRPM8 in CHO cells expressing TRPM8 [30]. Therefore, we examined 
the in silico docking of lysoPC-22:4 in the active site of TRPM8 using 
the AutoDock Vina software. We set the number of outputs poses to 
20, with a total of 100 candidate conformations. LysoPC-22:4 showed 
good binding energy (-10.8 kcal/mol) (Table 2). LysoPC-22:4 formed 
hydrogen bonds with Tyr-745, Glu-782, and Tyr-1005 (Figure 1a). The 
results indicate that lysoPC-22:4 binds to the TRPM8 channel. Under 
these conditions, icilin (a well-known TRPM8 agonist) showed a strong 
interaction energy of -11.4 kcal/mol (Figure 1b, Table 2). In addition, 
we examined the in silico docking of lysoPE-20:4 and lysoPE-22:6 to 
the active site of TRPM8. A similar docking score was obtained using 
lysoPE-20:4 instead of lysoPC-22:4 (Table 2). LysoPE-22:6 showed 
a strong interaction energy of -11.4 kcal/mol (Table 2). LysoPE-20:4 
interacted with Glu-782, Asn-799, Asp-802, Arg-842, and Tyr-1005, 
and lysoPE-22:6 interacted with Asn-799 and Arg-842 (Figures 1c and 
1d, Table 2). Subsequently, we examined the in silico docking of 13-
HODE, 9-HODE, and OEA to the active site of TRPM8 to determine 
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Figure 1. Effect of HELP exposure on immunoreactive cytokine levels in the plasma of healthy individuals 
Effect of HELP exposure (9 kV/electrode + 9 kV/electrode, 30 min) exposure on the plasma levels of immunoreactive IL-1β (a), IL-6 (b), IL-10 (c), IL-18 (d), TNF-α (e), and TGF-β1 (f) at 
multiple time points. *p<0.05 compared with before exposure. **p<0.01 compared with before exposure. 

a b

c d

Figure 2. In silico molecular docking of lysoPC-22:4, icilin, lysoPE-20:4, and lysoPE-22:6 in the TRPM8 active site
(a) Binding mode of lysoPC-22:4 in the homology modeling of TRPM8. The yellow dashed line indicates hydrogen bonding. The carboxyl of the ester moiety of lysoPC-22:4 forms a 
hydrogen bond with the hydroxyl group of Tyr-745. The hydroxyl group of lysoPC-22:4 forms a hydrogen bond with the carboxyl group of Glu-782. The phosphoryl ester moiety of 
lysoPC-22:4 forms a hydrogen bond with the hydroxyl group of Tyr-1005. (b) Binding mode of icilin in the homology modeling of TRPM8. The yellow dashed line indicates hydrogen 
bonding. The hydroxyl group of icilin forms a hydrogen bond with the guanidyl group of Arg-842. The red dashed line indicates π-π interaction. The nitrobenzene of icilin and the benzene 
ring of Tyr-745 interact with a π-π. The orange dashed line indicates a cation-π interaction. The phenol moiety of icilin and the guanidyl group of Arg-842 or Arg-1008 interact with cation-π. 
(c) Binding mode of lysoPE-20:4 in the homology modeling of TRPM8. The yellow dashed line indicates hydrogen bonding. The carboxyl of the ester moiety of lysoPE-20:4 forms a 
hydrogen bond with the guanidyl group of Arg-842. The phosphonyl group of lysoPE-20:4 forms a hydrogen bond with the carboxamide group of Asn-799. The primary amine group of 
lysoPE-20:4 forms a hydrogen bond with the carboxyl group of Glu-782 or Asp-802. The primary amine group of lysoPE-20:4 forms a hydrogen bond with the carboxamide group of Asn-
799. The hydroxyl group of lysoPE-20:4 forms a hydrogen bond with the hydroxyl group of Tyr-1005. (d) Binding mode of lysoPE-22:6 in the homology modeling of TRPM8. The yellow 
dashed line indicates hydrogen bonding. The phosphoryl ester moiety of lysoPE-22:6 forms a hydrogen bond with the guanidyl group of Arg-842. The phosphonyl group of lysoPE-22:6 
forms a hydrogen bond with the guanidyl group of Arg-842. The quaternary amine group of lysoPE-22:6 forms a hydrogen bond with the carboxamide group of Asn-799.

    Before After  Ratio  
  n Mean ± SE Mean ± SE After/Before   p-value

Adrenaline (ng/mL) 16 20.9 ± 0.9 20.5 ± 0.9 0.98 0.242
DHEAS (ng/mL) 16  144 ± 27 139 ± 20 0.97 0.670
Histamine (nM) 25 1.16 ± 0.37 1.26 ± 0.38 1.09 0.500
Insulin (mU/L) 16 12.2 ± 2.6 10.5 ± 2.0 0.86 0.452

Neuropeptide Y (pg/mL) 25 124 ± 5 117 ± 6 0.94 0.170
Serotonin (µ/mL) 25 1.09 ± 0.08 1.19 ± 0.09 1.09 0.313

Somatostatin (ng/mL) 25 52.1 ± 3.5 49.2 ± 3.2 0.94 0.481

Table 1. Effect of HELP exposure (9 kV/electrode + 9 kV/electrode, 30 min) on immunoreactive hormone levels in the plasma of healthy individuals
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the specificity. The binding energies were -9.1, -9.3, and -9.8 kcal/mol 
for 13-HODE, 9-HODE, and OEA, respectively (Table 2). 

Discussion
In this study, we showed that the levels of IL-1β and IL-6 are 

sensitive to acute EF exposure in healthy humans. Notably, the absence 
of a pro-inflammatory cytokine TNF-α response indicates that the 
IL-1β and IL-6 responses are not adverse nonspecific actions of the 
immune function in humans. Our previous studies have shown that 
the IL-6 levels in the plasma of healthy individuals are ineffective after 
15 min of acute EF exposure [22]. An acute EF exposure of 30 min may 
be necessary to develop a significant inhibitory effect on the IL-6 levels 
in the plasma. Further studies are warranted to identify the optimal 
condition for the downregulation of pro-inflammatory cytokines such 
as IL-6 and IL-1β induced by EF exposure. The molecular mechanisms 
of changes in the plasma levels of IL-6 and IL-1β following HELP 
exposure are complex and may be interpreted in several ways. The 
endogenous lipid-derived metabolite 3-hydroxybutyrate (3-HBA) has 
been suggested to function as an endogenous inhibitor of the NLRP3 
inflammasome [31]. Using nontargeted human metabolomics, we 
recently demonstrated that the increase in plasma 3-HBA levels is 
elicited by EF exposure [24]. Interestingly, Youm et al. reported that 
3-HBA inhibits the secretion of IL-1β in LPS-stimulated human 
monocytes without significantly affecting the production of TNF-α 
[32]. In addition, there is evidence that IL-6 is a known downstream 
target of IL-1β, consistently increased in the blood of patients with 
NLRP3 inflammasome-mediated conditions [33]. Thus, it is reasonable 
to speculate that EF exposure may inhibit the NLRP3 inflammasome 
through the upregulation of 3-HBA. 

Furthermore, we previously showed an acute EF exposure (9 kV/
electrode+9 kV/electrode, 30 min)-induced increase in the levels of 
lysoPC-22:4 (approximately 1.47-fold) in other lipid-derived signaling 
molecules [28]. Considering the role of the TRP channel family in 
changes in the plasma levels of lysoPC-22:4, Andersson et al. reported 
an increase in [Ca2+] induced by lysoPC-16:0 in CHO cells transfected 
with TRPM8 [30]. Unfortunately, lysoPC-22:4 is not commercially 
available as a pure chemical reagent for pharmacological experiments. 
Thus, at present, it is not possible to investigate the effect of lysoPC-22:4 
on the intracellular levels of calcium in CHO-K1 or HEK293T cells 
stably expressing hTRPM8. An increasing number of reports on virtual 
simulation are available in the literature [25,28,34]. Studies involving 
in silico molecular docking have been conducted to support the 
pharmacological results. However, the crystal structure of hTRPM8 has 
not yet been determined. Thus, we focused on the homology modeling 
of TRPM8. In the present study, the docking simulation showed that 
lysoPC-22:4 has good binding affinity (-10.8 kcal/mol). The docking 
scores were compared with several well-known transient receptor 
potential vanilloid 1 (TRPV1) agonists such as 13-HODE, 9-HODE, 
and OEA to determine the relative affinity further [35,36]. These 
results suggest that TRPV1 agonists exhibit weaker affinity than icilin, 

lysoPC-22:4, lysoPE-20:4, and lysoPE-22:6 with a homology model of 
TRPM8. In key interacting residues, a previous study using the TRPM8 
homology model (PDB ID: 1QGR) with icilin binding pockets reported 
hydrogen bonding to Tyr-745 [37]. Another study on menthol, a well-
known TRPM8 agonist, showed that mutating arginine at position 
842 in S4 of TRPM8 to alanine decreases the affinity for menthol 
[38]. Once the crystal structure of TRPM8 is determined, it may be 
interesting to identify the binding pocket of lysoPC-22:4, lysoPE-20:4, 
and lysoPE-22:6 in hTRPM8. However, lysoPC-22:4, lysoPE-20:4, and 
lysoPE-22:6 also activate the G protein-coupled receptor 119, raising 
the possibility that these receptors may serve as targets for lysoPC-22:4, 
lysoPE-20:4, and lysoPE-22:6 during EF exposure [25]. 

Considerable evidence for the modulation of cytokines has been 
obtained from animal models of arthritis and neuropathic pain [39-
42]. In particular, Naito et al. reported that static EF exposure inhibits 
the increased expression of IL1β, but not of TNFα in arthitic hind 
paws [40]. Interestingly, the sensitivity of cytokines in that study was 
comparable to that observed in the present study. On the other hand, 
Khalil et al. reported that TRPM8 in macrophages modulates colitis 
through a balance-shift in the production of pro-inflammatory and anti-
inflammatory cytokines [43]. Moreover, Ramachandran et al. reported 
that activation of TRPM8 by icilin attenuates trinitrobenzenesulfonic 
acid- or dextran sodium sulfate-induced colonic inflammation in in vivo 
models [44]. Thus, it is reasonable to speculate that EF exposure may 
alleviate inflammation through the binding of TRPM8 by lysoPC-22:4, 
lysoPE-20:4, and lysoPE-22:6. However, it is unclear whether changes in 
the levels of IL-1β and IL-6 may be attributed to neurons, macrophages, 
melanocytes, or keratinocytes. Although the underlying mechanisms 
of anti-inflammation by EF exposure remain to be elucidated, the role 
of lysoPC-22:4, lysoPE-20:4, or lysoPE-22:6 as endogenous agonist of 
TRPM8 may be potential mechanisms. Thus, it is conceivable that the 
decrease in IL-1β and IL-6 levels is, at least in part, responsible for the 
improvement observed in leprosy patients with neuroinflammation 
undergoing EF exposure [2-3]. Moreover, Proudfoot et al. reported 
that activation of TRPM8 elicits analgesia in chronic neuropathic pain 
models [45]. There is also evidence that activation of TRPM8 exerts 
an analgesic effect on acute and inflammatory pain [46]. Interestingly, 
Vanmolkot and de Hoon reported increased blood C-reactive protein 
(CRP) levels in young adult patients with migraine [47]. Using 
lipidomic analysis of serum samples, Ren et al. recently reported that 
the levels of lysoPE-22:6 are decreased in migraine patients [48]. Thus, 
it is reasonable to speculate that EF exposure alleviates headache such 
as migraine via upregulation of lysoPE-22:6. It may be interesting to 
evaluate the possible effect of EF exposure on migraine in future studies. 

Chronic inflammation in aging has also been proposed as a strong 
risk factor for morbidity and mortality in elderly individuals [49]. Of 
note, centenarians cope with chronic subclinical inflammation through 
an anti-inflammatory response termed “anti-inflammaging” [50]. It 

Ligand Docking score (kcal/mol)  Interactive residues
Icilin ₋11.4 Tyr-745, Arg-842, and Arg-1008

LysoPC-22:4 ₋10.8  Tyr-745, Glu-782, and Tyr-1005
LysoPE-20:4 ₋10.4  Glu-782, Asn-799, Asp-802, Arg-842, and Tyr-1005
LysoPE-22:6 ₋11.4  Asn-799, and Arg-842 

13-HODE  ₋9.1 Asp-802
9-HODE  ₋9.3  

OEA ₋9.8 Asp-781

Table 2. Docking score and key interacting residues of TRPM8 
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may be interesting to evaluate the possible effect of repetitive HELP 
exposure on human longevity in future studies. 

Considerable evidence regarding an association between IL-6 and 
sleep quality has been obtained from studies involving aging females 
and a meta-analysis of cohort studies [51-53]. Interestingly, Irwin et al. 
reported that sleep disturbance is associated with high levels of CRP 
and IL-6, but not TNF-α [54]. In contrast, Milrad et al. reported that 
poor sleep quality is associated with greater circulating levels of TNF-α, 
IL-1β, and IL-6 [55]. In the present study, repeated EF treatment was 
not performed. Therefore, it is reasonable to speculate that EF therapy 
alleviates insomnia, at least in part, through the downregulation of IL-
1β and IL-6 [6,15,16,20]. Further basic research studies are warranted 
to elucidate the alleviative effect of endogenous lipid-derived signaling 
molecules such as lysoPC-22:4, lysoPE-20:4, or lysoPE-22:6 on sleep 
disturbance. 

In conclusion, acute HELP exposure induced marked inhibitory 
effects on the plasma levels of IL-1β and IL-6 in healthy individuals. In 
silico molecular docking of lysoPC-22:4, lysoPE-20:4, and lysoPE-22:6 
was observed for TRPM8. Our findings provide insight into the 
molecular mechanisms involved in the alleviation of headache and 
insomnia induced by the HELP device. These mechanisms may also be 
important for defense against inflammaging. 
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