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Abstract
Medical treatment using high-voltage electric potential (HELP) devices to generate an electric field (EF) is an alternative therapy commonly used in Japan. However, 
the underlying mechanisms of the potential health benefits are not fully understood. To address this issue, we performed plasma lipidomics using liquid chromatography 
in combination with tandem mass spectrometry (LC-MS/MS). 9-Hydroxyoctadecadienoic acid (HODE), 13-HODE, and 13-hydroperoxy-octadecadienoic acid 
(HpODE) levels were significantly upregulated after HELP (18 kV, 30 min) exposure. However, there was no effect on HODE-related diol- metabolites, epoxide- 
metabolites, ketone- metabolites, or prostaglandins (PGs). We further examined the effect of HELP exposure on plasma concentrations of mediators using enzyme-
linked immunosorbent assay (ELISA)/enzyme immunoassay (EIA). Immunoreactive substance P (SP) and brain-derived neurotrophic factor (BDNF) levels were 
significantly upregulated after HELP exposure. Under these conditions, HELP exposure had no effect on immunoreactive levels of vasoactive intestinal peptide 
(VIP), bradykinin, calcitonin gene-related peptide (CGRP), or motilin. Our findings provide insight into the possible relationship between the pharmacological 
modulation of neuromediators and that of HODEs by EF exposure. They may also be important in the development of electroceuticals. 

Abbreviations: α-MSH: alpha-melanocyte-stimulating hormone; 
AA: arachidonic acid; BDNF: brain-derived neurotrophic factor; 
CGRP: calcitonin gene-related peptide; COX: cycloxygenase; CYP4A: 
cytochrome P450 oxidase 4A; DiHOME: dihydroxy-octadecenoic 
acid; EF: electric field; EIA: enzyme immunoassay; ELISA: enzyme-
linked immunosorbent assay; EpOME: epoxy-octadecenoic acid; GPR: 
G protein-coupled receptor; HELP: high-voltage electric potential; 
HETE: hydroxyeicosatetraenoic acid; HODE: hydroxyoctadecadienoic 
acid; HOTrE: hydroxyoctadecatrienoic acid; HpODE: hydroperoxy-
octadecadienoic acid; LA: linoleic acid; LC-MS/MS: liquid 
chromatography in combination with tandem mass spectrometry; LOX: 
lipoxygenase; NGF: nerve growth factor; OEA: oleoylethanolamide; 
OxoODE: oxo-octadecadienoic acid; PG: prostaglamdin; 15-PGDH: 
15-hydroxy prostaglandin dehydrogenase; PLA2: phospholipase A2; 
PLA2G2D: group IID secretory phospholipase A2; PPAR-γ: peroxisome 
proliferator-activated receptor-gamma: SP: substance P; TRPV1: 
transient receptor potential vanilloid 1; and VIP: vasoactive intestinal 
peptide

Introduction 
A therapeutic device designed to expose the human body to high-

voltage electric potential (HELP) has been approved by the Ministry 
of Health, Labour and Welfare in Japan [1-9]. High-voltage electric 
field (EF) therapy is reported to be an effective treatment for stiff 
shoulders, constipation, insomnia, and headaches [1-9]. However, the 
mechanisms by which EF exposure induces its variety of health benefits 

are poorly understood. Key mediators, such as neuropeptide and 
endogenous metabolites, have been suggested as candidate molecules 
that represent the interface between symptoms and electroceutical 
target proteins [10-16]. Our previous attempts to find an EF exposure-
induced biomarker using non-targeted plasma metabolomics led to the 
detection of changes in an endogenous lipid-derived signaling molecule 
oleoylethanolamide (OEA), and unsaturated fatty acids such as oleic 
acid, linoleic acid (LA), cis-11-eicosenoic acid, cis-11,14-eicosadienoic 
acid, cis-8,11,14-eicosatrienoic acid, cis-5,8,11,14,17-eicosapentaenoic 
acid, cis-4,7,10,13,16,19-docosahexaenoic acid, and arachidonic acid 
(AA) [15]. In particular, OEA activates the transient receptor potential 
vanilloid 1 (TRPV1) on perivascular sensory nerves [17]. In our 
previous study, we found that OEA induces marked upregulation in 
group IID secretory phospholipase A2 (PLA2G2D) expression in human 
subcutaneous cultured adipocytes [15]. Liberation of LA or AA in the 
PLA2 reaction is believed to represent the rate-limiting step of the 
cascade leading to the formation of bioactive lipid mediators. Thuren 
et al. reported that activation of PLA2-catalyzed hydrolysis was induced 
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by EF [18]. Thus, we hypothesized that the increase in unsaturated fatty 
acids, such as LA and AA, after EF exposure may be affected to change 
in lipoxygenase (LOX)-derived metabolites in plasma. In this study, we 
investigated the levels of LA- and AA-derived lipid metabolites using 
LC－MS/MS in plasma samples obtained from healthy subjects before 
and after exposure to a single HELP stimulation. We report that the 
LA-derived lipid mediator 9-HODE and 13-HODE can be upregulated 
by HELP (18 kV, 30 min) exposure. Because 9-HODE treatment to 
cultured trigeminal ganglia neurons induces the release of sensory 
neuropeptide by the activation of TRPV1 [19], we also investigated the 
effect of HELP (18 kV, 30 min) exposure on several mediators.  

Materials and methods
EF exposure

The system used for EF exposure has been previously described 
[8,9,15,16]. The EF system was equipped with a transformer, a seat, 
and two insulator-covered electrodes. One electrode was placed on a 
floor plate on which the subject’s feet were located, and the other was 
placed above the subject’s head. EF generated by the HELP apparatus 
(Healthtron PRO-18T, H9000, or HES-A30; Hakuju Institute for 
Health Science Co., Ltd., Tokyo, Japan) was uniformly created by 
transforming a 50-Hz alternating current at 18 kV. The safety of this 
system for human use was established by the Japanese government in 
1963. 

Subjects

Thirty-five healthy adults (12 males and 23 females; mean age, 
46.3 ± 1.1 years; mean body mass index (BMI), 22.3 ± 0.5 kg/m2) 
participated in experiment 1 (exposure condition: 18 kV, 30 min). 
Ten healthy adults (3 males and 7 females; mean age, 46.8 ± 2.9 years; 
mean BMI, 22.5 ± 1.0 kg/m2) participated in experiment 2 (exposure 
condition: 18 kV, 30 min). Ten healthy adults (5 males and 5 females; 
mean age, 42.4 ± 2.8 years; mean BMI, 23.6 ± 1.0 kg/m2) participated in 
experiment 3 (exposure condition: 18 kV, 15 min). Ten healthy adults 
(5 males and 5 females; mean age, 42.5 ± 2.9 years; mean BMI, 21.4 
± 1.0 kg/m2) participated in experiment 4 (exposure condition: 9 kV, 
15 min). Ten healthy adults (6 males and 4 females; mean age, 45.9 ± 
2.9 years; mean BMI, 22.9 ± 1.0 kg/m2) participated in experiment 5 
(exposure condition: 30 kV, 15 min). All experiments were performed 
in the morning and all participants signed an informed consent form 
after receiving verbal and written information about the study. All 
experiments were conducted in accordance with the Declaration of 
Helsinki and the study protocol was approved by the human ethics 
committee of Hakuju Institute for Health Science Co., Ltd. (Tokyo, 
Japan). 

Plasma preparation

Blood samples were collected in vacutainer tubes coated with 
ethylenediaminetetraacetic acid (VP-NA070K; Terumo Corporation, 
Tokyo, Japan) and immediately centrifuged at 800 x g for 5 min 
to separate plasma from other cellular materials. Plasma was then 
transferred to a fresh Eppendorf tube and stored at -80°C until 
processing.  

LC－MS/MS analysis

Lipid metabolites were measured as described previously [20]. 
LC－MS/MS analysis of lipid metabolites was performed using a 
API 4000 mass spectrometer (AB SCIEX, Foster City, CA, USA) 
equipped with the ACQUITY UPLC separation module (Waters 

Corporation, Milford, MA, USA). Chromotographic separation was 
performed at 40°C on a HSS T3 column (1.8 µm, 2.1 x 150 mm, Wa-
ters Corporation, Milford, MA, USA) under gradient conditions at a 
flow rate of 0.153 mL/min. The moblile phases consisted of 0.1% ace-
tic acid/acetonitrile (7:3, v/v) and acetonitrile/2-propanol (1:1, v/v). 
The turbo ion spray interface was operated in the negative ion mode. 
Quantification was performed using Analyst 1.5.2 (AB SCIEX, Foster 
City, CA, USA). Multiple reaction monitoring (MRM) m/z transitions 
were 9-HODE=295 /171; 13-HODE=295/195; 9-HOTrE=293/171;13-
HOTrE=293/195; 9,10-DiHOME=313/201; 12,13-DiHOME=313/183; 
9(10)-EpOME=295/277;12(13)-EpOME=295/171; 9-HpODE=293/185; 
13-HpODE=293/113; 9-OxoODE=293/185; 13-OxoODE=293/113; 
5-HETE=319/301; 12-HETE=319/301; 15-HETE=319/219; 20-
HETE=319/301; PGD2=351/315; PGE2=351/271; PGF2α=353/309; 
13,14-dihydro-15-keto-PGD2=351/333; 13,14-dihydro-15-keto-
PGE2=351/333; and 13,14-dihydro-15-keto-PGF2α=353/182. 

ELISA/EIA assay

Plasma immunoreactive levels of SP, VIP, bradykinin, CGRP, 
motilin, BDNF, and NGF were measured using a human SP EIA kit 
from Cayman Chemical (Ann Arbor, MI), human VIP and NGF ELISA 
kit from LifeSpan BioSciences (Seattle, WA), human bradykinin ELISA 
kit from Cloud-Clone (Houston, TX), human CGRP ELISA kit from 
Bertin Pharma (Montigny le Bretonneux, France), human motilin 
ELISA kit from Cusabio Biotech (Wuhan, Hubei, China), or human 
BDNF ELISA kit from Phoenix Pharmaceuticals (Belmont, CA). 

Statistical analysis

Data were analyzed using Welch’s t-test. A probability (p) value < 
0.05 was considered statistically significant. 

Results 
Effect of HELP exposure on lipid metabolites in plasma from 
healthy humans

We assessed LA-derived lipid metabolites in the plasma obtained 
from 35 healthy participants using LC－MS/MS. HELP (18 kV, 30 
min) exposure showed significantly higher plasma concentrations 
of 9-HODE (2307 ± 142 vs. 1956 ± 136 pg/mL, p=0.004), 13-HODE 
(4419 ± 264 vs. 3762 ± 272 pg/mL, p=0.001), and 13-HpODE (486 
± 50 vs. 427 ± 47 pg/mL, p=0.016) than pre-exposure levels (Figure 
1 and Table 1). Under these conditions, HELP exposure had no 
effect on 9-hydroxyoctadecatrienoic acid (HOTrE); 13-HOTrE; 
9,10-dihydroxy-octadecenoic acid (DiHOME); 12,13-DiHOME; 
9(10)-epoxy-octadecenoic acid (EpOME); 12(13)-EpOME; 9-HpODE; 
9-oxo-octadecadienoic acid (OxoODE); or 13-OxoODE (Figure 1 and 
Table 1). 

To investigate whether other hydroxyl- metabolites were affected 
by HELP exposure, we tested the effect of HELP (18 kV, 30 min) 
exposure on AA-derived HETEs and PGs. As shown in Table 1, 
HELP exposure had no effect on 5-HETE; 12-HETE; 15-HETE; 20-
HETE; 13,14-dihydro-15-keto-PGD2; 13,14-dihydro-15-keto-PGE2; 
13,14-dihydro-15-keto-PGF2α;PGD2; PGE2; or PGF2α.

Effect of HELP exposure on immunoreactive SP levels in 
plasma from healthy humans at time points following EF

The results of EIA analysis of immunoreactive SP are shown in 
Figure 2a. Plasma imunoreactive SP concentrations significantly at 
the 30-min time point (A30) after HELP exposure when compared 
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with pre-exposure levels (0 min, 1.83-fold, p=0.111; 30 min, 2.37-
fold, p=0.032). The effect of HELP on immunoreactive SP levels was 
investigated using treatment for 15 min at 18 kV. The ratios of after/
before were 1.43 (p=0.136), 1.72 (p=0.007), and 2.37 (p=0.003) for the 

0-min time point (A0), 15-min time point (A15), and 45-min time 
point (A45), respectively (Figure 2b). 

The nature of the immunoreactive SP responsible for EF strength 
was then investigated using treatment for 15 min. The ratios of 
immunoreactive SP levels after the 45-min time point (A45) / before 
were 1.04 (p=0.792) and 1.29 (p=0.011) for 9 and 30 kV, respectively. . 

Effect of HELP exposure on mediators in plasma from healthy 
humans at different time points following EF

Given that the release of SP is thought to contribute to the 
modulation of mediators [21,22], we evaluated the effect of 30 min 
of HELP exposure to 18 kV on neurotrophins and peptide hormones 
in plasma. As shown in Table 2, plasma immunoreactive BDNF 
concentrations significantly increased at the 30-min time point 
after HELP exposure compared with pre-exposure levels (1.39-fold, 
p=0.041). In contrast, plasma immunoreactive NGF concentrations 
significantly decreased immediately after HELP exposure compared 
with pre-exposure levels (0.88-fold, p=0.017). Under these conditions, 
HELP exposure did not affect the immunoreactive levels of VIP, 
bradykinin, CGRP, or motilin (Table 2). 

The nature of the immunoreactive BDNF responsible for EF 
strength was then investigated using treatment for 15 min. The relative 
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Figure 1. Lipidomic analysis of human healthy plasma between before and after HELP (18 kV) exposure for 30 min. 
(a) Typical MS/MS spectrum for 9-HODE and 13-HODE from healthy human plasma sample. (b) Typical 9-HODE peak in healthy human plasma. (c) Typical 13-HODE peak in healthy 
human plasma. 

Metabolites Before (pg/mL) After (pg/mL) Ratio

Mean ± SE Mean ± SE After/Before p value

LA-derived (n = 35)
Alcohols

9-HODE 1956 ± 136 2307 ± 142 1.18 0.004 **
13-HODE 3762 ± 272 4419 ± 264 1.17 0.001 **
9-HOTrE 80.4 ± 12.7 89.7 ± 14.3 1.12 0.221
13-HOTrE 432 ± 66 428 ± 52 0.99 0.929
Diols

9,10-DiHOME 293 ± 30 326 ± 32 1.11 0.163
12,13-DiHOME 1136 ± 140 1150 ± 76 1.01 0.898
Epoxides
9(10)-EpOME 514 ± 127 560 ± 69 1.09 0.627
12(13)-EpOME 3829 ± 421 4338 ± 297 1.13 0.171
Hydroperoxides
9-HpODE 15.3 ± 2.0 16.9 ± 2.0 1.10 0.182
13-HpODE 427 ± 47 486 ± 50 1.14 0.016 *
Ketones
9-OxoODE 1131 ± 91 1080 ± 76 0.96 0.554
13-OxoODE 756 ± 47 791 ± 55 1.05 0.351
AA-derived (n = 10)
5-HETE 530 ± 58 491 ± 25 0.93 0.351
12-HETE 568 ± 139 433 ± 86 0.76 0.391
15-HETE 268 ± 35 245 ± 16 0.91 0.445
20-HETE 250 ± 54 259 ± 14 1.04 0.882
13,14-dihydro-15-keto-PGD2 4.60 ± 0.55 4.16 ± 0.39 0.90 0.272
13,14-dihydro-15-keto-PGE2 13.8 ± 2.4 12.8 ± 1.9 0.93 0.689
13,14-dihydro-15-keto-PGF2α 13.0 ± 2.5 11.3 ± 1.9 0.87 0.521
PGD2 4.26 ± 1.32 4.26 ± 1.19 1.00 0.998
PGE2 6.18 ± 1.12 8.33 ± 1.11 1.35 0.220
PGF2α 13.1 ± 2.4 10.2 ± 1.8 0.78 0.384

* Indicates a significant difference (*p<0.05, ** p<0.01, t-test).

Table 1. Lipid metabolite profiles in human healthy plasma between before and after HELP 
(18 kV; 30 min) exposure.

Mediators Before
Mean ± SE     

0 min          30 min          
After HELP     
Mean ± SE     

After HELP      
Mean ± SE     

n = 10          n = 10          n = 10          
Peptide hormones
VIP (pg/mL)                         221 ± 27 197 ± 27 227 ± 18 
Bradykinin (pg/mL)        11.0 ± 3.0 8.7 ± 2.1 7.1 ± 1.5 
CGRP (pg/mL)                       51.2 ± 13.8 46.6 ± 10.4 38.4 ± 7.5 
Motilin (pg/mL)                      28.3 ± 3.6 25.4 ± 1.7 27.4 ± 2.6 
Neurotrophins 
BDNF (ng/mL)                       21.3 ± 1.8 23.9 ± 3.0 29.7 ± 4.4 * 
NGF (pg/mL)                        19.9 ± 3.6 17.5 ± 3.9 * 20.1 ± 4.1 

*p < 0.05 compared with before. 

Table 2. Effect of HELP (18 kV, 30 min) exposure on mediators in plasma from healthy 
humans at multiple time points.
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ratios of after 45-min time point (A45) / before were 1.39 (p=0.031) and 
1.26 (p=0.006) for 9 and 30 kV, respectively. 

Discussion 
In this study, we showed that LA (18:2n-6)-derived hydroxy- (9-

HODE and 13-HODE) and hydroperoxy- (13-HpODE) fatty acids in 
healthy human subjects are sensitive to acute EF exposure. However, 
AA (20:4n-6)-derived hydroxy-fatty acids (20-HETE, 15-HETE, 12-
HETE, and 5-HETE) and AA-derived 13,14-dihydro-15-keto-PGs were 
not affected by EF exposure. 9-HODE and 13-HODE can be generated 
via 15-LOX in macrophages and vascular cells [23]. However, Upston 
et al. have shown that non-enzymatic oxidation of LA produces an 
approximately equal mixture of 9-HODE and 13-HODE [24]. Thus, 
EF exposure may generate, at least in part, 9-HODE and 13-HODE 
by non-enzymatic oxidation but not 5-LOX, 12-LOX, cytochrome 
P450 oxidase 4A (CYP4A), and cyclooxygenase (COX)/15-hydroxy 
prostaglandin dehydrogenase (15-PGDH). However, the detailed 
mechanisms of EF-induced changes in 9-HODE, 13-HODE, and 
13-HpODE remain to be elucidated. 

Our findings show that immunoreactive SP is upregulated by acute 
EF exposure. EF exposure did not appear to adversely alter physiological 
peptide hormone levels, at least those of VIP, bradykinin, CGRP, or 
motilin. The molecular mechanisms of changes in immunoreactive 
SP concentrations following EF exposure are complex and can be 
interpreted in several ways. Recently, a new member of the tachykinin 
family that displays high sequence identity with SP has been discovered 
[25]. To better understand the properties of immunoreactive SP, it is 
important to clarify the specificity of SP against the novel tachykinin 
peptide family including hemokinin 1. Further studies may elucidate 
the identity of immunoreactive SP. TRPV1 is a nonselective cation 
channel present on sensory neurons that is activated by heat (> 43°C), 
protons, capsaicin, and endovanilloids [26-28]. OEA, an endovanilloid, 
has been suggested to function as an endogenous agonist of TRPV1 
[17,29]. Kendall et al. recently reported that OEA and LA-derived 
hydroxy fatty acids, such as 9- and 13-HODE, were present in human 
skin at high concentrations [30]. Neuropeptides, such as SP and 

CGRP, are present in human skin [31]. Interestingly, Patwardhan et 
al. reported that 9-HODE and 13-HODE as endogenous ligands for 
TRPV1 were formed in animal skin biopsies after exposure to noxious 
heat at a temperature range of 40-55°C [19]. Of note is that application 
of 9-HODE to cultured trigeminal ganglia neurons stimulates the 
release of neuropeptide such as CGRP [19]. Nathan et al. reported 
that TRPV1-mediated SP release from primary sensory neurons [32]. 
Moreover, Miranda-Morales et al. have recently reported that axon 
reflexes evoked by TRPV1 activation are mediated by tetrodotoxin-
resistant voltage-gated Na+ channels in intestinal afferent nerves [33]. 
There is also evidence that electrical stimulation has a stimulating effect 
on release of SP from peripheral nerve terminals in the skin [34]. Thus, 
several endogenous ligands for TRPV1 may exert effects via SP release 
induced by the axon reflex at nerve terminals of peripheral sensory 
neurons in human intestine or skin [35]. Considerable evidence on 
the prevention of swallowing disorders has been obtained from studies 
of improvement of the swallowing reflex by capsaicin administration 
[36]. Ebihara et al. reported that administration of capsaicin improved 
the swallowing reflex by increasing SP levels [37,38]. In future, it will 
be important to assess the alleviative effect on dysphagia in clinical trial 
using EF exposure. 

SP, LA, 13-HODE, and 13-HpODE induces endothelial-mediated 
vasorelaxation in the coronary artery of the pig [39,40]. Interestingly, 
OEA also causes endothelium-dependent vasorelaxation in the rat 
small mesenteric artery [41]. OEA activates on perivascular sensory 
nerves and induces neuropeptide release [41]. A similar vasodilation 
was reported by Tochio et al. in a study examining the effect of EF 
exposure on the rat small mesenteric artery [42]. Thus, it is conceivable 
that the increase of 9-HODE, 13-HODE, 13-HpODE, OEA, and 
immunoreactive SP levels in plasma is, at least in part, responsible 
for the improvement observed in patients with stiff shoulders who 
undergo EF treatment [7]. 

Capsaicin is used for chronic pain relief as a defunctionalization 
inducer of nociceptor [27,28,43]. For example, a capsaicin dermal 
patch is available for the treatment of peripheral neuropathic pain [44]. 
Our previous study has shown that acute EF (18 kV, 30 min) exposure 
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Figure 2. Effect of HELP exposure on immunoreactive SP levels in plasma from healthy humans at multiple time points. 
(a) Effect of HELP (18 kV; 30 min) exposure on plasma immunoreactive SP levels at multiple time points. (b) Effect of HELP (18 kV, 15 min) exposure on plasma immunoreactive SP levels 
at multiple time points. Results are presented as mean ± SEM (n = 10). * p < 0.05 compared with before, ** p < 0.01 compared with before. 
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induces an increase in plasma OEA levels [15]. An experimental 
pretest－posttest design study by Shinba et al. showed that repetitive 
stimulation with EF exposure reduced the visual analog scale for pain 
in chronic pain with no obvious underlying disease [8]. Although 
repetitive EF treatment was not performed in this study, EF exposure 
may alleviate pain, at least in part, via desensitization of TRPV1 by 
9-HODE, 13-HODE, or OEA. However, 9-HODE and 13-HODE also 
activates peroxisome proliferator-activated receptor-gamma (PPAR-γ) 
[45], raising the possibility that these receptors also serve as targets 
for 9-HODE/13-HODE during EF exposure. Further studies are in 
progress. 

The results of this study also indicate that acute EF exposure affects 
plasma BDNF levels in healthy human subjects. Considerable evidence 
for the regulation of BDNF by alpha-melanocyte-stimulating hormone 
(α-MSH) has been obtained from the study of BDNF expression [46]. 
Nicholson et al. reported that BDNF release was induced by stimulation 
of the melanocortin-4 receptor [47]. We have reported that EF exposure 
induces an increase of the nonselective melanocortin receptor agonist 
α-MSH levels in plasma [16]. It is thus reasonable to speculate that 
EF exposure activates BDNF release/secretion or production through 
the upregulation of α-MSH. However, it is unclear at present whether 
changes in BDNF levels can be attributed to neurons, astrocytes, 
microglia, mast cells, fibroblasts, leukocytes, platelets, or keratinocytes. 
Further studies are needed to identify the BDNF signaling pathways 
induced by EF exposure. Notably, intact BDNF in peripheral circulation 
can cross the blood－brain barrier via a high-capacity, saturable 
transport system [48]. Positive correlations between blood BDNF and 
hippocampal BDNF levels have been observed in rats and pigs [49]. 
Neurotrophic activities in the hippocampus have been suggested 
to play a key role in spatial learning and memory function [50,51]. 
Interestingly, Yanamoto et al. have reported that EF exposure (5 h/day 
for 3 weeks) induces an increase of hippocampal BDNF levels in mice 
and an improvement of Morris water maze tasks in infarct lesions of 
mice [52]. In contrast, Campolongo et al. reported that post-training 
administration of OEA in rats enhances memory consolidation in a 
Morris water maze performance [53]. Thus, it is reasonable to speculate 
that EF exposure facilitates spatial learning and memory function via 
upregulation of OEA and BDNF. A recent study has shown negative 
correlations between plasma BDNF levels and objective evaluation 
of tinnitus severity [54]. In future, it will be of interest to evaluate the 
possible effect of EF exposure on tinnitus.

In conclusion, acute EF exposure exerted marked effects on plasma 
9-HODE, 13-HODE, SP, and BDNF levels in healthy subjects. Our 
findings provide insight into the molecular mechanisms of health 
benefits induced by the HELP device (PRO-18T) and may also be 
important in the development of therapies for dysphagia, chronic pain, 
mild cognitive impairment, and tinnitus.  
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