Benefits of CMV Prophylaxis in Solid Organ Transplantation

Marcelino González Padilla, Juan José Castón Osorio, Sara Cantisán Bohórquez, Antonio Rivero Román and Julián Torre-Cisneros

Infectious Diseases Unit, Reina Sofía University Hospital, Córdoba, Spain

Abstract

Cytomegalovirus infection continues to be one of the leading causes of morbidity in transplant patients. Cytomegalovirus disease causes both direct and indirect effects, with special consideration being given to the latter in recent years. The indirect effects of cytomegalovirus disease include the viral syndrome and the symptoms resulting from direct invasion of the tissues by the virus. The indirect effects are due to the immunomodulation caused by the virus, resulting in an increased incidence of acute rejection, cardiovascular disease, and opportunistic infections. The two main strategies for preventing cytomegalovirus disease are universal prophylaxis and preemptive therapy, with ganciclovir and valganciclovir being the drugs that have shown the most efficacy. Numerous studies have been conducted to evaluate the efficacy of these two strategies. Prophylaxis appears to have shown greater efficacy than preemptive therapy for preventing the indirect effects of cytomegalovirus disease, while both strategies appear to be similar in terms of preventing direct effects. In recent years, late cytomegalovirus disease and the occurrence of ganciclovir-resistant cytomegalovirus strains have taken on special interest. Many issues are still unresolved, such as the most appropriate duration of prophylaxis or which strategy is most appropriate depending on the patient’s risk of acquiring the disease. (Trends in Transplant 2007;1:76-87)

Corresponding author: Julián Torre-Cisneros, julian.torre.sspa@juntadeandalucia.es

Key words

Introduction

Cytomegalovirus (CMV) infection continues to be one of the leading causes of morbidity and mortality in solid organ transplantation and can cause both direct and indirect effects in transplant patients. The direct effects, or CMV disease, are related to the presence of high rates of viral replication, and are caused by direct tissue damage. The indirect effects are independent of the level of viral replication. They result from the interaction of CMV with the host immune system and have acquired great importance in recent years.

These effects appear to be related to the presence of low levels of viral replication for prolonged periods. The indirect effects reported include an increased risk of acute and chronic rejection, mortality, and opportunistic infections. Part of the indirect effects are mediated by CMV-induced immunosuppression, which leads to a dysfunction in lymphocytes and monocytes, altering their ability to produce cytokines and inverting the CD4/CD8 ratio. Other indirect effects such as graft rejection may be mediated by CMV-induced mRNA synthesis in infected cells. This activation leads to an increased production of immunoglobulin receptors, intracellular adhesion molecules, and glycoproteins similar to major histocompatibility complex (MHC) class I antigens.

Effect of prophylaxis on CMV disease: universal prophylaxis versus preemptive therapy

There are two main strategies that can be used to prevent CMV disease: universal prophylaxis and preemptive therapy. Both strategies have advantages and limitations, and there is currently no conclusive data as to which should be used. Universal prophylaxis consists of administration of an active drug to all patients at risk of having CMV infection. Preemptive therapy consists of administration of an antiviral drug to patients with evidence of asymptomatic viral replication to prevent the development of symptoms (CMV disease). Although there are several marketed drugs that are effective against CMV (ganciclovir, valganciclovir, cidofovir, foscarnet, valacyclovir), these preventive strategies are currently based on the use of ganciclovir, either in its intravenous formulation or in the form of valganciclovir. Oral bioavailability with this formulation is similar to that obtained with intravenous ganciclovir.

There is numerous evidence showing that both universal prophylaxis and preemptive therapy are effective to prevent CMV disease. A large number of studies have evaluated the efficacy of both strategies, including comparative studies of universal prophylaxis versus preemptive therapy. However, there are doubts about the efficacy of preemptive therapy to prevent indirect effects because this strategy does not fully prevent viral replication. In a recent meta-analysis that analyzed 17 trials with a total of 1980 patients, it was found that both universal prophylaxis and preemptive therapy were effective compared with placebo in preventing CMV disease. However, only universal prophylaxis was associated with a reduction in opportunistic infections and mortality. In another meta-analysis, showed the benefits of universal prophylaxis in preventing CMV disease, in reducing overall mortality, and in preventing numerous opportunistic infections (bacterial, protozoal, and viral) (Fig. 2).

Prevention of late CMV disease

The development of CMV disease beyond the first three months posttransplant
Trends in Transplantation 2007;1

(late disease) after cessation of prophylaxis is a worrying phenomenon20. Its atypical presentation in periods when the patient is far from the transplant center can make diagnosis difficult. Some authors have related late-onset CMV disease with an alteration in immune reconstitution dependent on CMV-specific T lymphocytes against the virus during periods of universal prophylaxis15,17,21,22. However, the studies that attempted to confirm this hypothesis obtained contradictory results23-26, and future investigations should clarify this issue.

We currently lack evidence to determine which is the best strategy to prevent the occurrence of late CMV disease. One option is to accept the risk and to treat CMV if it occurs. Another option is to complement the prophylaxis period with a protocol of virologic surveillance and preemptive therapy until the end of the first year posttransplantation. This option poses serious logistic problems in patients who live far from the transplant center. Furthermore, determination of viral load by polymerase chain reaction (PCR) has little predictive value after day +100 posttransplant27. Therefore, this strategy is probably most useful in patients at high risk of late disease such as D+/R− and lung transplant patients22,28. Objective criteria are currently being sought to define the risk of late disease, including the development of specific immu-

Figure 1. Direct and indirect effects of CMV (adapted from Fishman, et al.5 and Pérez-Sola, et al.4).
Table 1. Summary of the principal studies evaluating the efficacy of universal prophylaxis versus placebo or no treatment

<table>
<thead>
<tr>
<th>Author, year, organ</th>
<th>Serological status, mean follow-up time, number of patients</th>
<th>Drugs</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balfour, 1989, kidney⁷¹</td>
<td>Any serological status, 1 year, 104</td>
<td>Acyclovir 84 days vs. placebo</td>
<td>Reduction in CMV disease. No reduction in overall or CMV mortality</td>
</tr>
<tr>
<td>Gavaldá, 1997, liver⁷²</td>
<td>R+, 12 months, 73</td>
<td>Acyclovir 104 days vs. no intervention.</td>
<td>Reduction in CMV disease</td>
</tr>
<tr>
<td>Saliba, 1993, liver³³</td>
<td>R+, 3 months, 120</td>
<td>Acyclovir 84 days vs. no intervention</td>
<td>Reduction in CMV disease</td>
</tr>
<tr>
<td>Cohen, 1993, liver⁷⁵</td>
<td>R+, D+/R–, 18 months, 65</td>
<td>Ganciclovir 14 days vs. no intervention</td>
<td>No reduction in CMV disease or overall mortality was shown</td>
</tr>
<tr>
<td>Gane, 1997, liver⁶⁰</td>
<td>Any serological status, 12 months, 304</td>
<td>Ganciclovir 88 days vs. placebo</td>
<td>A reduction in CMV disease was shown. No reduction in mortality for any cause or CMV mortality was shown</td>
</tr>
<tr>
<td>Marigan, 1992, heart⁷⁶</td>
<td>R+, D+/R–, 4 months, 149</td>
<td>Ganciclovir 28 days vs. placebo</td>
<td>A reduction in CMV disease was shown. No reduction in mortality for any cause was shown</td>
</tr>
<tr>
<td>Lowance, 1999, kidney⁴⁷</td>
<td>R+, D+/R–, 12 months, 616</td>
<td>Valacyclovir 87 days vs. placebo</td>
<td>A reduction in CMV disease was shown. No reduction in mortality for any cause or CMV mortality was shown</td>
</tr>
<tr>
<td>Rechner, 1998, kidney⁷⁷</td>
<td>R+, D+/R–, 12 months, 79</td>
<td>Oral ganciclovir vs. oral acyclovir 84 days</td>
<td>In D+, ganciclovir was more effective than acyclovir</td>
</tr>
<tr>
<td>Badley, 1997, liver⁷⁹</td>
<td>Any serological status, 12 months, 167</td>
<td>IV ganciclovir 14 days + subsequent oral acyclovir vs. oral acyclovir 119 days</td>
<td>Ganciclovir + acyclovir was more effective to prevent CMV infection and disease than acyclovir alone in all groups</td>
</tr>
<tr>
<td>Martin, 1994, liver³⁸</td>
<td>Any serological status, 6 months, 139</td>
<td>IV ganciclovir 14 days + subsequent oral acyclovir vs. oral acyclovir 84 days</td>
<td>In R+, a reduction in CMV disease was shown with the first strategy</td>
</tr>
<tr>
<td>Winston, 1995, liver⁸⁰</td>
<td>Any serological status, 4 months, 99</td>
<td>IV ganciclovir vs. IV acyclovir + oral acyclovir 100 days</td>
<td>Prevention of CMV infection and disease was more effective in the first group</td>
</tr>
<tr>
<td>Winston, 2003, liver⁸¹</td>
<td>R+, 12 months, 219</td>
<td>IV ganciclovir 14 days + oral ganciclovir vs. IV ganciclovir 14 days + oral acyclovir 100 days</td>
<td>Prevention of CMV disease was superior in the first group</td>
</tr>
<tr>
<td>Paya, 2004, kidney, liver, heart, kidney-pancreas⁶⁷</td>
<td>D+/R–, 12 months, 364</td>
<td>Oral valganciclovir vs. oral ganciclovir 90 days</td>
<td>There were no significant differences between the two groups (except for a higher incidence of CMV invasive organ disease in the valganciclovir group in liver transplant)</td>
</tr>
<tr>
<td>Duncan, 1994, lung⁶⁰</td>
<td>R+, D+/R–, 12 months, 25</td>
<td>IV ganciclovir vs. IV ganciclovir 21 days + oral acyclovir 90 days</td>
<td>Greater reduction in CMV disease and bronchiolitis obliterans syndrome in the first group during the first year, with equal incidences at two years</td>
</tr>
<tr>
<td>Rubin, 2000, kidney, liver, heart⁶¹</td>
<td>D+/R–, 12 months, 155</td>
<td>IV ganciclovir 10 days + oral ganciclovir vs. IV ganciclovir 10 days + oral acyclovir 94 days</td>
<td>Prevention of CMV disease was more effective in the first group than in the second group</td>
</tr>
<tr>
<td>King, 1997, liver³³</td>
<td>D+/R–, 6 months, 56</td>
<td>IV ganciclovir + IG vs. placebo + IG 4 weeks</td>
<td>No significant differences were found</td>
</tr>
<tr>
<td>Aguado, 1995, heart⁶⁴</td>
<td>R+, 6 months, 31</td>
<td>IV ganciclovir 14 days vs. IG</td>
<td>The first group achieved a significant reduction in the incidence of CMV disease</td>
</tr>
</tbody>
</table>

CMV: cytomegalovirus; R+: cytomegalovirus seropositive recipient; D+: cytomegalovirus seropositive donor; R–: cytomegalovirus seronegative recipient; IV: intravenous; IG: cytomegalovirus-specific immunoglobulin.
Table 2. Summary of the principal studies evaluating the efficacy of preemptive therapy versus placebo or conventional therapy (treatment when the disease appears, without a prophylactic strategy)

<table>
<thead>
<tr>
<th>Author, year, organ transplanted</th>
<th>Serological status, mean follow-up time, number of patients</th>
<th>Drugs used</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hibberd, 1995, kidney</td>
<td>R+, 6 months, 113</td>
<td>Ganciclovir 9 days after antithymocyte globulin vs. no treatment</td>
<td>A reduction in CMV disease was shown. No reduction in mortality for any cause or CMV mortality was shown</td>
</tr>
<tr>
<td>Torre-Cisneros, 2002, liver</td>
<td>D+/R−, R+, 6 months, 64</td>
<td>Oral ganciclovir vs. no treatment 7 weeks</td>
<td>The first group showed a significant reduction in the incidence of CMV disease. There were no significant differences in mortality or rejection</td>
</tr>
<tr>
<td>Paya, 2002, liver</td>
<td>R+, D+/R−, 4 months, 69</td>
<td>Oral ganciclovir 56 days vs. placebo</td>
<td>Preemptive use of ganciclovir significantly reduced the incidence of CMV disease, but not the incidence of acute rejection</td>
</tr>
<tr>
<td>Rayes, 2001, liver</td>
<td>Any serological status, 4 months, 60</td>
<td>Oral ganciclovir 14 days vs. standard care</td>
<td>Preemptive therapy did not reduce the incidence of CMV disease</td>
</tr>
<tr>
<td>Brennan, 2001, liver</td>
<td>R+, D+/R−, 12-18 months, 36</td>
<td>IV ganciclovir 14 days vs. standard care</td>
<td>Preemptive therapy was not shown to significantly reduce the incidence of CMV disease, organ rejection or mortality compared to conventional therapy</td>
</tr>
<tr>
<td>Sagedal, 2003, kidney</td>
<td>R+, D+/R−, 12 months, 80</td>
<td>Oral ganciclovir 27-70 days vs. standard care</td>
<td>Preemptive therapy significantly reduced the incidence of CMV disease compared to conventional therapy. There were no differences in late disease, mortality or rejection between both groups</td>
</tr>
</tbody>
</table>

CMV: cytomegalovirus; R+: cytomegalovirus seropositive recipient; D+: cytomegalovirus seropositive donor; R−: cytomegalovirus seronegative recipient.

Table 3. Summary of the principal studies evaluating the efficacy of preemptive therapy versus universal prophylaxis

<table>
<thead>
<tr>
<th>Author, year, organ transplanted</th>
<th>Serological status, mean follow-up time, number of patients</th>
<th>Drugs used</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singh 1994, liver</td>
<td>Any serological status, 6 months, 47</td>
<td>IV ganciclovir 7 days (preemptive therapy) vs. oral acyclovir 168 days (universal prophylaxis)</td>
<td>The group with preemptive therapy showed a significant reduction in CMV disease compared to group with acyclovir prophylaxis</td>
</tr>
<tr>
<td>Khoury, 2006, kidney</td>
<td>R+, D+/R−, 12 months, 98</td>
<td>Oral valganciclovir 21 days (preemptive therapy) vs. oral valganciclovir 100 days (universal prophylaxis)</td>
<td>No differences were found in the incidence of CMV disease. Higher incidence of late viremia in the prophylaxis group</td>
</tr>
<tr>
<td>Jung, 2001, kidney</td>
<td>Any serological status, 12 months, 70</td>
<td>Oral ganciclovir 14 days (preemptive therapy) vs. oral ganciclovir 90 days (universal prophylaxis)</td>
<td>No significant differences were found between both groups</td>
</tr>
</tbody>
</table>

IV: intravenous; R+: cytomegalovirus seropositive recipient; D+: cytomegalovirus seropositive donor; R−: cytomegalovirus seronegative recipient.
Table 4. Results of the meta-analysis performed by Kalil, et al. 18

<table>
<thead>
<tr>
<th></th>
<th>CMV organ disease</th>
<th>CMV organ disease in patients treated with anti-lymphocyte antibodies</th>
<th>Graft rejection</th>
<th>Death</th>
<th>Bacterial and fungal infections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal prophylaxis</td>
<td>OR: 0.20 (95% CI: 0.13-0.31)</td>
<td>81% reduction (95% CI: 60-90%)</td>
<td>OR: 0.74 (95% CI: 0.59-0.94)</td>
<td>OR: 0.62 (95% CI: 0.40-0.96)</td>
<td>51% reduction (95% CI: 33-64%)</td>
</tr>
<tr>
<td>Preemptive therapy</td>
<td>OR: 0.28 (95% CI: 0.11-0.69)</td>
<td>64% reduction (95% CI: 92% reduction - 52% increase)</td>
<td>OR: 0.47 (95% CI: 0.24-0.91)</td>
<td>OR: 0.94 (95% CI: 0.32-2.76)</td>
<td>No significant reduction</td>
</tr>
</tbody>
</table>

OR: odds ratio; CI: confidence interval; R+: cytomegalovirus seropositive recipient; D+: cytomegalovirus seropositive donor; R–: cytomegalovirus seronegative recipient; CMV: cytomegalovirus.

Effect of universal prophylaxis on the development of resistance

There is some concern over the possibility that prolonged use of ganciclovir may increase the emergence of CMV strains resistant to the drug. Although we cannot ignore the fact that resistant strains are a real problem, current evidence suggests that it is a rare phenomenon, especially when ganciclovir is used. This was shown in the virologic analysis of a comparative study of ganciclovir versus valganciclovir in D+/R– patients, and also in another large prospective multicenter study, where valganciclovir is used in D+/R– kidney transplant recipients. However, a study has shown that seroconversion during the prophylaxis period is not predictive of late CMV disease. Finally, we cannot exclude the possibility of extending prophylaxis until six months post-transplantation. This practice is widely used in many lung transplant groups, but it is a controversial issue, especially in lower-risk patients. The results of an ongoing clinical trial (Impact Study) where valganciclovir is used in D+/R– kidney transplant recipients may be useful to test this hypothesis.
of all cases of CMV disease in patients receiving valganciclovir prophylaxis. This low incidence of resistance development in patients treated with valganciclovir could be explained by the higher drug exposure existing in patients treated with this drug at the doses established in the pivotal studies (900 mg every 24 hours).34,35.

Effect of prophylaxis on the indirect effects of CMV infection

Heart transplant

Cytomegalovirus infection in heart transplant recipients has been associated with the development of cardiac allograft vasculopathy, decreased survival, and an increased incidence of lung infections. However, CMV prophylaxis is able to reduce the incidence of some of these effects36-38.

In the post hoc analysis of a randomized, placebo-controlled trial, ganciclovir prophylaxis was shown to significantly reduce the relative risk of cardiac allograft vasculopathy after 4.7 years of follow-up in transplant patients who did not receive calcium blockers. There are doubts about the benefit provided by combined use of CMV-specific immunoglobulin in ganciclovir prophylaxis, although there are data supporting this practice. Combined use of ganciclovir and immunoglobulin has been shown to reduce the incidence of rejection and increase survival at three years compared to ganciclovir alone. Bonaros, et al. showed a significant reduction in CMV-associated mortality, cardiac allograft vasculopathy, and infections in general when prophylaxis with immunoglobulin plus ganciclovir was compared with immunoglobulin alone. Opelz, et al. also found a beneficial effect on graft survival in patients who received CMV prophylaxis (Fig. 4).

Kidney transplant

Numerous studies have found an association between CMV infection and the development of acute or chronic rejection and cardiovascular disease. CMV infection has been associated with an increased incidence of mortality and diabetes and a reduction in graft survival. Death from
a cardiovascular cause was significantly higher in CMV-seropositive patients in a single-center retrospective study45. In another retrospective study, CMV disease was a risk factor for developing myocardial infarction or arrhythmias46.

Valacyclovir prophylaxis may reduce the risk of biopsy-proven acute rejection in seronegative patients47. The beneficial impact of CMV prophylaxis on survival in patients older than 60 years observed in the study by Opelz, et al. was also striking. This author observed a survival rate at three years after transplantation of 83% in the 5426 patients who received prophylaxis versus 71% in the 2908 who received no prophylaxis (p = 0.0008)41 (Fig. 5). A recent study has shown that the incidence of acute rejection in patients who received prophylaxis with ganciclovir was lower than in those who received acyclovir or no prophylaxis49. This reduction in the incidence of acute rejection may be related to an immunomodulatory effect associated with the use of certain antiviral drugs50-52.

In a study of 36 renal transplant patients at high risk of CMV disease53, preemptive therapy was not associated with a reduction in mortality or in the incidence of acute rejection compared to conventional therapy (treatment if symptoms appear). In a trial that compared the use of preemptive therapy with ganciclovir versus no treatment in patients who had received antithymocyte globulin, no significant differences were found in the incidence of death or opportunistic infections54.

Pancreas-kidney transplant

Most pancreas-kidney transplant groups perform aggressive prophylaxis of CMV infection2. This means that there are no control groups in which to demonstrate a beneficial effect of prophylaxis on the incidence of acute rejection. Perhaps the best evidence can be obtained from a multicenter study of 205 pancreas-kidney transplant recipients between 1998 and 2000, which showed a significant increase in rejection-free survival at three years in patients who received prophylaxis with ganciclovir versus those who received acyclovir or no prophylaxis (61.4 vs. 42.4%; p < 0.001)49,55.

Lung transplant

Lung transplantation has the highest risk of CMV infection56. Despite the prophylactic strategies developed, mortality associated with CMV remains significant57. *Bronchiolitis obliterans* syndrome, frequently associated with CMV infection, is one of the major causes of morbidity and mortality. Cytomegalovirus prophylaxis has been shown to reduce the incidence of rejection and *bronchiolitis obliterans* syndrome55. Rüttmann, et al., in a study of 68 high-risk lung transplant recipients (D+/R−, D+/R+), found a significant reduction in overall and specific mortality, CMV disease, rejection, and *bronchiolitis obliterans* syndrome, when the use of ganciclovir plus CMV-specific hyperimmune globu-
lin was compared with ganciclovir alone57 (Table 5). Because of the high incidence of late replication, prolonged periods of prophylaxis may be required to show the beneficial effects on rejection.

In a study comparing universal prophylaxis with ganciclovir versus acyclovir58, a lower incidence of bronchiolitis obliterans syndrome was found in the first group in the first year posttransplant, but this incidence was later equal in both groups.

Liver transplant

Although liver transplantation is considered to have an intermediate risk of CMV disease, it has been used as a model to show the relationship between viral reactivation and the occurrence of opportunistic infections, primarily bacterial and fungal59. The CMV infection has also been associated with increased mortality in these patients60. This virus has been associated with vanishing bile duct syndrome, which in turn increase the risk of fibrosis and graft dysfunction. The relationship between CMV infection and the development of chronic rejection in liver transplant patients is well known61. The possibility that CMV replication may accelerate the progression of posttransplant HCV reinfection cannot be excluded, although studies are needed to confirm this hypothesis because the results of some of the studies conducted to date are contradictory62-65,92-94.

Cytomegalovirus prophylaxis has been shown to reduce the incidence of biopsy-proven chronic rejection66 and to increase long-term graft survival67. In addition, the results of some studies provide evidence of the impact of prophylaxis of CMV infection on patient survival. In one of these studies65, a randomized, placebo-controlled study, patients in the placebo group showed higher mortality than those who received oral ganciclovir.
Other benefits of CMV prophylaxis

There are studies that have observed a reduction in the incidence of human herpesvirus 6, 7, and 8, varicella zoster virus, and Epstein-Barr virus in patients who received CMV prophylaxis\(^6\). In an analysis of renal transplant patients that compared 108 post-transplant lymphoproliferative disease (PTLD) cases with 404 controls, prophylaxis with ganciclovir was associated with a significant reduction in PTLD risk. These effects were not shown when acyclovir was used\(^5\). Correct prophylaxis of CMV infection is currently considered one of the mainstays for prevention of PTLD in high-risk patients.

Some studies have found an association between seropositivity for CMV and a higher prevalence of type 2 diabetes mellitus\(^6\) and atherosclerosis in patients with diabetes mellitus\(^7\). Cytomegalovirus prophylaxis may have a potential role in the prevention of diabetes mellitus in selected patients.

Acknowledgement

Supported by the Ministry of Health and Consumer Affairs, King Charles III Health Institute - FEDER, Spanish Network for Research in Infectious Diseases (REIPI RD06/0008).

References

9. Small LN, Lau J, Snyderman RS. Preventing post-organ transplantation cytomegalovirus disease with ganciclovir: a meta-analysis comparing prophylactic and preemptive therapies. Clin Infect Dis 2006;43:869-80. *(Study performed on the basis of indirect comparisons of meta-analyses of prevention strategies where universal prophylaxis and prevention were equally effective in reducing the incidence of CMV disease).*
17. Shobin OA, West EE, Lechtzin N, et al. Persistent CMV-specific memory responses in the lung allograft and blood
37. Bonaros NE, Kocher A, Dunkler D, et al. Comparison of combined prophylaxis hyperimmune globulin plus ganci-

50. C. Cyclosporine and anti-CD3 blockade of lymphocyte proliferation disorder among renal transplant patients in rela-
56. Funch DP, Ko HH, Travasso J, et al. Posttransplant lympho-
proliferative disorder among renal transplant patients in rela-
57. Bonaros NE, Kocher A, Dunkler D, et al. Comparison of combined prophylaxis hyperimmune globulin plus ganci-
60. Malaise J, Ricart MJ, Moreno A, et al. CMV infection in si-
63. Duncan SR, Grunich WF, Iacono AT, et al. A comparison of ganciclovir and acyclovir to prevent CMV after lung trans-
69. Humar A, Gillingham K, Payne WD, et al. Increased inci-
dence of cardiac complications in kidney transplant recipi-

"46. D. Humar A, Gillingham K, Payne WD, et al. Increased inci-
dence of cardiac complications in kidney transplant recipi-
ents with CMV disease. Transplantation 2000;70:310.
48. Giral M, Nguyen JM, Dagnin P, et al. Mycophenolate mofetil does not modify the incidence of CMV disease after kidney transplantation but prevents CMV-induced chronic graft dys-
tions, HCV sequelae, and mortality) in liver-transplant recipients with the use of preemptive therapy for 13 years. Transplantation 2005;79:1428-34.