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Introduction
Age-related macular degeneration (AMD) is the main cause of 

irreversible blindness in the elderly. Factors related to its genesis such as 
aging, genetic, environmental, dietetic, and cardiovascular, become the 
prognosis of this disease unfavorable. Biological markers (biomarkers) 
in AMD are hardly used; rather, imaging exams such as color fundus 
photography (CFP), fundus autofluorescence (FAF), optical coherence 
tomography (OCT), fluorescein angiography and ICG are the selected 
options for its diagnosis, prognosis, and assessment of the therapeutic 
efficacy. A biomarker is an indicator of normal biological and pathogenic 
processes, or pharmacologic responses to a therapeutic intervention 
[1]. Hence, the analysis of oxidative stress biomarkers in AMD may be 
valuable considering that oxidative stress is the state where there is an 
imbalance between the antioxidant defense system and the generation 
of reactive species [of oxygen (ROS) or nitrogen (RNS)], with the 
involvement of multiple molecules in the progression of the disease. 

It is first necessary to point out that oxidizing and antioxidant 
substances are generated in a scenario of oxide-reduction reactions, 
where oxidation implies electron gain and reduction, its loss. Many 
authors have adopted the term redox system imbalance to refer to 
oxidative stress [2,3], the main AMD triggering factor.  The retina is 
a tissue exposed to oxidative stress due to its high metabolism, large 
concentrations of polyunsaturated fatty acid content, exposure to 
visible light (between 400 - 700 nm) and the presence of photosensitive 
molecules such as rhodopsin and lipofuscin [4]. The chronic oxidative 
stress induced by UV-light exposure, along with high ocular oxygen 
levels, generate ROS and RNS, such as superoxide (O2¯ •), hydrogen 
peroxide (H2O2), singlet oxygen (1O2), and peroxynitrite (ONOO-) 
and trigger permanent peroxidation of polyunsaturated lipids in the 
membrane system of ocular photoreceptor membranes leading to lipid 
peroxidation–derived protein modifications, which induce damage 

to retinal pigment epithelial (RPE) cells [5-8]. Nevertheless, the body 
synthesizes antioxidant enzymes by means of complex mechanisms 
such as the nuclear factor e2-related factor 2 (Nrf2) activated. The 
Nrf-2 activation induced by the reactive oxygen species promotes an 
increase in the expression of antioxidant enzymes, responsible for 
maintaining the retinal homeostasis and consequent visual function 
[9]. With aging, the increase of ROS/RNS and the decrease in the 
expression of antioxidant enzymes are observed, making the macula 
more susceptible to AMD [10]. The redox imbalance can potentially 
increase the expression of toxic molecules such as malondialdehyde 
(MDA) and advanced glycation end products (AGEs), which induce 
the accumulation of lipofuscin inside the RPE cells [11-13]. The 
accumulation of intracellular lipofuscin causes dysfunction of RPE cells 
[14-15], leading to an anomalous deposition of lipids and cholesterol 
esters in the Bruch’s membrane (BM) [16-17], forming druses and 
other extracellular deposits [18-19], clinically characterizing the onset 
of AMD. Lack of cure has encouraged the discovery of new diagnostic, 
prognostic and therapeutic strategies that may help to prevent or 
slow the onset and/or progression of AMD. From the onset of AMD 
(characterized by redox imbalance) to the advanced stage of the disease 
(characterized by the increase of cytokines, enzymes, and growth 
factors) several molecules come into play. Hence, this review aims 
to describe the role of oxidative molecules responsible for triggering 
AMD and correlate them with their serum, plasma, and urine levels. 

Abstract
Molecular biomarkers are of utmost importance for the diagnosis, prognosis, and treatment monitoring of several diseases. In age-related macular degeneration 
(AMD), the major cause of irreversible blindness in the elderly, the diagnosis, prognosis, and therapeutic assessment are performed by means of imaging exams such 
as color fundus photography, fundus autofluorescence, optical coherence tomography, fluorescein angiography and indocyanine green. The use of molecular biomarkers 
to warn physicians and patients about a favorable or unfavorable progression of AMD is not usual. The current review aims to describe the participation of oxidative 
molecules in triggering AMD and correlate them with the respective serum, plasma, and urine measurements, non-invasive and low-cost methods, which provide 
a personalized pre-clinical, and consequently a pre-symptomatic, approach for AMD screening, control, and prevention. The data sources used in this review study 
include Pubmed, MedlinePlus Health Information, and Elsevier Science. Articles cited in the reference list obtained through this search were also reviewed, whenever 
relevant.
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It is meant to serve as a practical guide for ophthalmologists in their 
daily practices, with an attempt to assess the possible AMD biomarkers 
by means of non-invasive, safe, and inexpensive exams, and limited to 
nongenetic compounds.

Methods of literature search
The data sources used in this review study include Pubmed, 

MedlinePlus Health Information, and Elsevier Science. We used the 
following keywords and their synonyms in various combinations: 
age-related macular degeneration; biomarker; free radicals; aging; 
antioxidant/pro-oxidant balance; oxidative stress; macromolecular 
damage. When a specific molecule was identified, the specific risk 
factor was also used as a keyword in a second PubMed search to identify 
additional publications. Articles cited in the reference list obtained 
through this search were also reviewed, whenever relevant.

Oxidative stress of molecules
The reactive species, generated by enzymatic and non-enzymatic 

systems, have been associated with a large number of physiologic and 
pathological processes (20). Although they are essential for a variety of 
cellular defense mechanisms [21,22], ROS (as well as RNS) can cause 
oxidative damage in biomolecules [lipids, proteins, carbohydrates, and 
deoxyribonucleic acid (DNA)] when present in larger quantity than 
their system-mediated neutralization antioxidant defense. Under these 
conditions, ROS/RNS become unstable, very reactive, and short-lived, 
preventing the detection of these reactive species in biological samples, 
such as tissues, fluids, and complex biological systems [23,24]. The 
suggested option to measure ROS is the use of a species with stable, 
detectable, and measurable characteristics that can reveal the pathways 
that may trigger some pathologies [25]. The cellular products resultant 
from the oxidative damage into lipids, proteins, carbohydrates, and 
DNA are used as biomarkers of oxidative stress, providing indirect 
detection of the ROS activity in several diseases [23], including AMD 
[4, 26-27].

Lipid peroxidation biomarkers 

The lipids are organic compounds with essential functions for the 
human body which include energy storage, membrane integration 
and structure (phospholipid bilayer), in the biosynthesis process 
of important substances such as prostaglandins, and as an enzyme 
cofactor [28,29]. The lipids represent the main target for the ROS [30], 
especially the glycolipids, phospholipids, and cholesterol [31]. The lipid 
peroxidation resultant from the oxidation of polyunsaturated fatty 
acids (PUFAs) produces lipid hydroperoxides and several aldehydes 
[29,32], with a negative impact in the body, triggering several cellular 
damages which may lead to multiple diseases [31,33].  The retina 
is one of the body tissues with the highest concentration of PUFAs, 
essential for the maintenance of the physiological retinal function and 
development [34,35]. The photoreceptor outer segments (POS), with 
high PUFAs (up to 70%), are easily peroxidized due to the presence 
of high concentrations of oxygen and UV irradiation. These POS 
are continuously phagocyted and degraded by the RPE cells. Under 
oxidative stress and inflammation, these lipids become dysfunctional 
and generate a mix of lipid oxidation products (LOP) which will further 
form malondialdehyde (MDA) or 4-hydroxy-trans-2-nonenal (HNE), 
constituting a material source resistant to lysosomal degradation named 
lipofuscin [8,14,36-39]. The accumulation of non-degradable material 
in the lysosomes causes intracellular accumulation of phagosomes and 
autophagosomes, with subsequent reduced phagocytosis and autophagic 
sequestration.  This sequence of events has been demonstrated in an 

experiment in which the lysosomal dysfunction induced by Bis-retinoid 
N-retinyl-N-retinylidene ethanolamine (A2E), the major component 
of lipofuscin, significantly reduced the capacity of cultivated RPE 
cells to phagocyte the POS and sequester cytoplasmic material [40].  
Extracellular deposits of non-degradable material, resultant from the 
reduced phagocytic capacity, may trigger additional damage, such as 
apoptosis and formation of drusen [41-44]. Many studies demonstrate 
the presence of esterified and unesterified cholesterol, triglyceride, and 
lipoproteins in drusen [19,45-47], which induce the inflammatory 
response [48]. In this regard, the accumulation of apolipoprotein B100 
(apoB100) lipoprotein particles in the BM and RPE cell apoptosis are 
considered critical events for the triggering of AMD [4,6,19,49-50].  
Regarding the systemic biomarkers, several studies have shown that 
AMD patients have higher lipid peroxidation levels in their plasma [51-
52].

Low-density lipoproteins

Oxidized Low-Density Lipoproteins (OxLDL) originate from low 
density lipoprotein (LDL) in pro-oxidant tissue environment in which 
lipids and proteins become oxidatively modified causing diseases such 
as atherosclerosis [53,54]. The retina, particularly the photoreceptor 
layer rich in unsaturated lipoproteins, is readily susceptible to oxidation 
by ROS. Lipid oxidation increases with the age and presence of oxidized 
low-density lipoproteins are particularly relevant to retinal para-
inflammation [55]. Studies suggest that OxLDL may also be involved 
in pathobiological alterations of RPE cells [56-59]. It is important to 
point out that RPE cells express functional receptors for both LDL 
(LDL-R) and CD36 [60,61], which take up LDL and OxLDL in large 
quantities, both in vitro and in vivo [44].  The accumulation of oxidized 
lipid-protein complexes in the RPE prevents phagosome maturation 
by blocking phosphatidylinositol 3-kinase (PI3K) recruitment to the 
phagosomal membrane, leading to delayed processing of internalized 
POS [62].  Consequently, the oxysterols, products of autoxidation or 
cholesterol enzymatic oxidation, in OxLDL become cytotoxic to RPE 
cells [44,62]. Both the alterations of the sensory retina as well as those 
of RPE, induced by OxLDL, contribute to AMD pathogenesis [44,58]. 
From these alterations, formation of subretinal deposits may be formed 
[63] since accumulation of oxidized lipids and lipoproteins has been 
found in BM and is thought to be an early event in the development 
of AMD [59,64]. Another study revealed that besides OxLDL, native 
LDL can potentially up-regulate the expression of vascular endothelial 
growth factor (VEGF), a major angiogenic and inflammatory factor in 
RPE cells (56). Nevertheless, it has been demonstrated that the OxLDL 
treatment decreased human retinal pigment epithelial (ARPE-19) cells 
viability in a dose-dependent manner, whereas native LDL had no effect. 
Incubation of ARPE-19 cells with 10 mg/mL OxLDL induced marked 
apoptosis, compared with untreated control cells. OxLDL also increased 
VEGF expression and decreased Pigment Epithelium-Derived Factor 
(PEDF) expression, whereas native LDL had no significant effect. The 
VEGF-to-PEDF ratio was elevated after OxLDL treatment, suggesting 
that OxLDL treatment induced cellular changes in ARPE-19 cells that 
seemed to reflect pathogenic events in neovascular AMD [65].  It was 
also demonstrated that OxLDL induces apoptosis of human retinal 
pigment epithelium through activation of ERK-Bax/Bcl-2 signaling 
pathways [66], and promotes NLRP3 inflammasome activation [67], 
playing a role in the pathogenesis of AMD, also through this pathway.  
A study corroborated the reported findings that oxidized LDL increases 
the expression of inflammatory factors as well as the production of ROS, 
which could be regulated by the activation of the canonical pathway 
[68]. It was suggested that OxLDL could promote senescence of RPE 
cells, inducing outer blood-retinal barrier dysfunction as an early 
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pathogenesis of AMD [69].  Additionally, free-radical oxidation of lipids 
in LDL produces protein-bound (carboxyalkyl) pyrroles [70], which 
bind to cellular proteins forming advanced lipoxidation end products 
(ALEs) and induce an inflammatory response, contributing to the 
progression of AMD [71,72]. Corroborating this theory, studies report 
that LDL and OxLDL treatments increase the expression of fibronectin, 
laminin alpha 1, collagen type IV alpha 2, and transforming growth 
factor beta-2 (TGF-b2) in RPE cells in vitro, similar to the pathogenic 
events identified in AMD [58]. It has been shown that OxLDLs are 
immunohistochemically detected in surgically excised choroidal 
neovascular (CNV) membranes, revealing those macrophages and 
RPE in the CNV membranes express cell surface scavenger receptors 
for oxidized lipoproteins. This study suggested that macrophages may 
accumulate to take up oxidized lipoproteins in AMD [57]. Experimental 
studies in vivo and in vitro, inducing RPE to a lipid oxidative damage 
and chronic inflammation by means of exposure to OxLDL, have been 
performed to assess the antioxidant and anti-inflammatory effects of 
several substances [73-77]. 

Another theory correlates the origin of the lipoproteins in BM 
with plasma LDL particles in the choriocapillaris. Circulating human 
plasma LDL may enter the RPE through fenestrated junctions in the 
choriocapillaris endothelium, crossing BM to reach the RPE [44,78]. 
Considering this hypothesis, the serum results of OxLDL become 
relevant. The increased LDL in serum was related to the increased risk 
of AMD whereas increased high-density lipoprotein (HDL) was related 
to decreased risk [79,80]. A study with 45 patients affected by exudative 
age-related macular degeneration (E-AMD), compared with 45 sex- 
and age-matched healthy controls, reported a positive and significant 
correlation between plasma OxLDL concentration and homocysteine 
in patients with E-AMD [81]. Conversely, an observational prospective 
cohort study assessed the relationship between serum OxLDL 
cholesterol and the incidence of AMD over a 25-year period. A cohort 
of 2468 participants was selected for OxLDL measurements, revealing 
that OxLDL was associated with neither a worsening condition along 
the AMD severity scale, nor with the incidence of late AMD [82]. 
Another study with fewer participants also did not correlate the serum 
levels of OxLDL with AMD [83].

Malondialdehyde 

Malondialdehyde (MDA), a highly reactive three-carbon 
dialdehyde produced as a byproduct of PUFA peroxidation, is catalyzed 
by free radicals [11,84] and has been detected in high levels in several 
diseases [85]. Its molecule is small, with polar characteristics and highly 
soluble in water [86]. MDA is one of the most studied biomarkers of 
oxidative stress, used in several experimental human, animal and even 
plant models. This biomarker presents mutagenic and cytotoxic effects 
in the body, important in the assessment of lipid peroxidation [87]. 

A study reported that the aerobic illumination of human lipofuscin 
isolated from aged donors leads to formation of hydroperoxides and 
MDA [88].  Another study confirmed the presence of MDA in RPE 
[26]. In fact, some studies have also shown that MDA induces RPE 
dysfunction and VEGF expression in RPE [89-93]. Similarly, MDA 
was found in the drusen [26,93]. From the epidemiologic perspective, 
clinical trials have shown the risk of high dietary intake of linoleic acid 
(LA) for AMD [94,95].  Experimentally, higher dietary intake of LA 
promoted progression of the CNV membrane in mice with increased 
MDA levels [92].  Many studies have suggested that MDA levels are 
higher in the blood of AMD patients than in that of healthy subjects 
[96-100]. A systematic review and meta-analysis, involving twelve 
case-control studies with a total of 634 AMD patients and 656 controls 

without AMD, concluded that there is some evidence of higher levels of 
MDA in AMD patients compared with healthy controls; however, this 
result should be interpreted with caution because of extreme between-
study heterogeneity and the possible effect of publication bias [101]. 
It is important to point out that age is an important confounder when 
assessing the potential role of blood MDA in oxidative stress. Indeed, 
advanced age is associated with increasing MDA. Although most 
studies that report MDA as a risk factor for AMD claim that patients 
and controls were age-matched, the precision of matching and the 
statistical test of the outcome of matching are seldom shown [101].

Isoprostanes

A great advancement in the assessment of lipid peroxidation was 
made with the discovery of F2 isoprostanes (F2-IPs). They comprise a 
class of compounds structurally similar to prostaglandin-F2 (PGF2), 
which are produced by the peroxidation of the arachidonic acid (AA) 
and of other PUFAs, such as the linolenic, the eicosapentaenoic (EPA) 
and the docosahexaenoic acid (DHA) [102-104]. F2-IPs are considered 
the most sensitive and most stable marker of lipid peroxidation and 
oxidative stress [105-106]. High levels of F2-IPs in human fluids and 
tissues were found in atherosclerosis, chronic inflammation, diabetes, 
pulmonary diseases, Alzheimer’s, and other neurodegenerative 
disorders [107-109]. 

At first, it is important to emphasize that the retinal photoreceptors 
contain the highest concentrations of AA and DHA in relation to any 
other known membrane [110]. They are highly peroxidizable [111]. 
Additionally, the formation of F2-IPs is regulated by the oxygen 
tension, so that the production of isofurans (IsoF), oxidation products 
generated from the nonenzymatic oxidation of AA (formed instead of 
F2-IPs in settings of increased oxygen tension), is favored as the oxygen 
concentration increases [105], which makes the retina an appropriate 
tissue for the formation of F2-IPs [4]. High levels of this biomarker 
were related to risk factors for diseases associated with AMD [112], 
such as smoking [113], and multiple systemic diseases [106,114-115]. 
It is known that the lipid peroxidation has been widely associated with 
inflammation [116], one of the main pillars of AMD genesis.  While one 
of the studies did not report any association between early AMD and 
serum levels of 8-Iso-Prostaglandin F2 [117], another one suggested a 
significant association of mean plasma levels of IsoFs with AMD [118]. 
Nevertheless, a more relevant association was observed in a study that 
included 238 adults with AMD and 390 age- and sex-matched controls 
without AMD, reporting that higher levels of urinary F2-IPs were 
associated with AMD [119] and have been used as biomarkers of AMD 
in several studies [120-123].

4-Hydroxynonenal
4-Hydroxy-2,3-trans-nonenal (4-hydroxynonenal, HNE) or 

4-hydroxyhexenal (4-HNE) is highly reactive α,β-unsaturated 
hydroxyalkenal [123]. 4-HNE is one of the main end products of 
the lipid peroxidation of the AA and has been widely accepted as an 
inducer and mediator of the oxidative stress, being involved in the 
pathogenesis of several degenerative diseases such as Alzheimer’s, 
atherosclerosis, cataract, and cancer [11,124-125]. In the retina, a large 
number of proteins contain HNE adducts, suggesting that HNE is 
the main oxidant of the retina. It has been shown that 4-HNE binds 
to cellular proteins forming ALEs [71-72], which may induce an 
inflammatory response, believed to play a role in the pathogenesis of 
AMD. A significant number of proteins modified by the HNE have 
been identified in damages induced by light [126-127], age [128-129] 
and in a model of retinitis pigmentosa in pigs [130]. As an important 
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mediator of oxidative stress, 4-HNE induces lysosome dysregulation, 
lipofuscin generation and apoptosis of RPE cells [131-133]. It is known 
that proteins modified by the HNE in the photoreceptors exert their 
toxic effects on RPE for also inducing angiogenic cytokines [134], such 
as interleukin-6 (IL-6), interleukin-1-β (IL-1β) and tumor necrosis 
factor alpha (TNF-α) [135]. In a study, high levels of 4-HNE generated 
superoxide anion which leads to the apoptotic degeneration of RPE 
through the activation of NADPH oxidase 4 (NOX4) [136]. However, 
despite the confirmed participation of HNE in the AMD pathogenesis 
[39], it was observed that the proteins modified this biomarker and 
did not accumulate in the neurosensory retina during the progression 
of the disease, suggesting that the pathways involved in the HNE 
detoxification or in the removal of the proteins modified by HNE are 
adequate to prevent its accumulation. Hence, HNE has been considered 
a little sensitive retinal biomarker for AMD [137]. Conversely, due to the 
toxicity in ARPE-19) cells, HNE has been used in experimental studies 
that search for information about antioxidant and anti-proliferative 
properties of several substances such as the quercetin [138], N-acetyl-
cysteine [139], and edaravone [140].  HNE has also been used in 
experiments that seek a better understanding of AMD mechanism 
[26,90,139,141-142].  For example, a study investigated the molecular 
and cellular effects of cigarette smoke exposure on human RPE cells. 
Exposure of ARPE-19 or primary human RPE cells to cigarette smoke 
extract (CSE) or hydroquinone (HQ) caused oxidative damage and 
apoptosis. Evidence of oxidative damage also included increased lipid 
peroxidation (4-HNE) and mitochondrial superoxide production, as 
well as a decrease in intracellular glutathione (GSH) [143]. Therefore, 
HNE plasma levels have been used to assess the effect of oxidant and 
antioxidant substances in AMD epidemiologic studies [120].

Carboxyethylpyrrole
Carboxyethylpyrrole (CEP) protein adducts belong to a family of 

2-(ω-carboxyalkyl) pyrrole adducts generated from the oxidation of 
PUFA [70], exclusively from DHA compounds [144]. DHA is present 
in small quantities in most tissues, but it is a major structural lipid 
of the retina presenting particularly high levels in this neural tissue 
[145-146]. Although rare in most human tissues, o DHA is the most 
oxidizable fatty acid in humans and is present in ~80 mol % of the 
polyunsaturated lipids in POS [110]. DHA may be involved in the 
permeability, thickness, fluidity, and other properties of the membrane 
of photoreceptors (146), and its insufficiency is linked to changes in 
the function of the retina [146-147]. Immunocytochemical analysis 
showed that CEP was present in photoreceptor rod outer segments 
and RPE cells in both mouse and human retinas [13,144]. Additionally, 
it has been reported that CEP protein adducts found in AMD are 
immunogenic, inducing autoantibody production and inflammation in 
the retina [13,144,148]. The immunization of mice with CEP-modified 
mouse serum albumin (CEP-MSA) induced antibodies against CEP 
and led to inflammatory responses such as the deposit of complement 
component-3 in BM and macrophage infiltration [149]. CEP is involved 
in the pathogenesis of both angiogenesis in the retina (wet AMD) 
[150] and geographic retinal atrophy (dry AMD) [149]. Regarding 
wet AMD, it has been shown that CEP adducts stimulate angiogenesis 
in the chick embryo chorioallantoic membrane (CAM) and corneal 
micropocket assays and exacerbate CNV in a mouse model. These 
results, coupled with the elevated levels of CEP adducts in AMD tissues, 
strongly suggest that CEP may play a role in the development of the 
wet (exudative) form of AMD. Overall, these results suggest that CEP-
induced angiogenesis utilizes VEGF-independent pathways and that 
anti-CEP therapeutic modalities might be of value in limiting CNV in 
AMD [150]. Confirming the inflammatory and angiogenic condition of 

CEP, studies revealed that it induces PYD domains-containing protein 
3 (NLRP3) inflammasome priming, via Toll-like receptor 2 (TLR2) in 
macrophages, promoting IL-1β release [151]. Similarly, other studies 
reported that CEP-adducts cooperate in a highly specific manner to 
amplify low-grade inflammation mediated by TLR2/TLR1-activating 
pathogen associated molecular patterns (PAMPs) that produce TNF-α, 
IL-12 polarization [152]. Hence, the presence of CEP protein adducts 
in the outer retina is considered an early marker of high risk for AMD 
development [13,149,153]. An immunocytochemical analysis of BM/
choroid tissue demonstrated higher CEP and carboxymethyllysine 
immunoreactivity in BM/RPE/choroid tissues of donors with AMD 
than of donors with normal eyes [13,144]. A study confirmed these 
findings revealing that CEP protein adducts are more abundant in 
the tissue of donors with AMD than in those with normal eyes [154].  
Consequently, DHA oxidation products may be used as biomarkers to 
identify susceptibility to AMD [144]. Specifically, CEP markers increase 
the predictive accuracy of AMD [155], as well as its prognosis [156].

A study with 19 donors revealed that the mean level of anti-CEP 
immunoreactivity in human plasma with AMD was 1.5-fold higher than 
in age-paired controls. The serum levels of AMD patients presented a 
mean of anti-CEP antibody 2.3-fold higher than those of controls.  
Out of the patients (n = 13) who presented higher levels of antigen 
and autoantibodies than the control patients without AMD, 92% had 
AMD [144]. Another study that used a significantly larger sample size 
(916 AMD and 488 control donors), determined a 1.6-fold increase in 
mean plasma anti-CEP immunoreactivity and a 1.3-fold increase in 
mean plasma anti-CEP autoantibody titer in AMD donors with respect 
to control donors [155]. The plasma analysis of the 58 AMD and 32 
control donors also revealed that CEP increased ~86% in the AMD 
cohort and that in combination with N-ε-carboxymethyllysine (CML) 
and pentosidine increased the potential use of the biomarker to assess 
risks of and susceptibility to AMD [156]. Interestingly, proteomic CEP 
markers alone can distinguish between AMD and normal donors with 
approximately 76% accuracy and when analyzed together with genomic 
markers, the discriminatory accuracy increased to about 80% [157].

Protein oxidation biomarkers protein carbonyl 

Protein carbonyl content is an index of the amount of oxidative 
damage to proteins due to the direct attack of free radicals or 
modification of proteins by the carbohydrate oxidation products or 
PUFA. The carbonylated proteins are composed of a carbon atom 
double-bonded to an oxygen atom, commonly found in determined 
functional groups, named aldehydes and ketones [158-160]. The 
binding of carbonyl groups in residues of protein amino acids is a 
major hallmark for oxidative modification [161]. Carbonyl protein, 
considered the most widely studied marker of protein oxidation, has 
been used in several publications as a parameter of oxidative stress 
[162-164], due to the chemical stability of the carbonyl group, its 
oxidation-irreversible products and irreparable changes induced by 
the group, although the cells display native enzymatic systems that 
eliminate the changed proteins and maintain homeostasis and cell 
survival [165]. When these enzymatic systems fail, the carbonylated 
proteins accumulate in the cells, interrupting their functions [166]. 
Concentration increase, and consequent accumulation in the body, 
is associated to smoking and aging, as well as to the development of 
several pathologies such as Alzheimer’s, Parkinson, Huntington, and 
respiratory syndromes [160,167-168]. The plasma biological samples 
are the most used analytical methods for the detection of the carbonyl 
groups [158]. Values of protein carbonyl groups in plasma significantly 
higher than in CG have been observed in patients with wet AMD [169]. 
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Other studies have shown similar results, reporting significant increase 
of protein carbonyl groups in AMD when compared to control group 
[170-171]. It has also been demonstrated that aging significantly affects 
the antioxidant status and oxidative damage in AMD patients when 
compared to controls, and an increase of protein carbonyl groups was 
identified in both early- and late-AMD patients [99]. Conversely, a 
study that sought to examine the relationship between inflammation, 
oxidative stress, and endothelial dysfunction markers with a 20-year 
cumulative incidence of early AMD did not find a relationship between 
total carbonyl content (TCC) and early AMD [117].

Biomarkers of carbohydrate oxidation

AGEs comprise a heterogeneous group of compounds derived 
from a non-enzymatic reaction named glycation, Maillard reaction, 
a spontaneous post-translational modification in which a carbonyl 
group of reducing sugars is covalently bound to proteins, lipids and 
nucleic acids [171-172] The α-dicarbonyls can react with lysine and 
arginine functional groups on proteins, leading to the formation of 
stable AGE compounds, such as CML, a lysine modification, and 
pentosidine, a fluorescent lysine-arginine cross-link, generated by 
oxidation of carbohydrate [173]. Their physiological serum level is in 
the range of 2–10 Lg/mL and increases with age [174]. AGEs, generated 
from oxidized carbohydrate products, promote inflammation in many 
general age-related diseases such as Alzheimer's disease, atherosclerosis, 
diabetes, osteoarthritis [175-177], and represent a risk factor for AMD 
development [178]. CML, a major circulating advanced glycation end- 
product, was the first AGE to be found in AMD BM and drusen [179].  
Further studies reported that CML increases with age in BM [180-181]. 
Other studies have identified glycoxidation products in subretinal 
membranes of patients with AMD [178,182], whereas the study that 
assessed the macula of human donor retinas from normal eyes and 
eyes with early AMD and advanced AMD with GA demonstrated that 
RAGE and AGE were elevated on RPE and photoreceptor cells in early 
and advanced dry AMD [183], especially in RPE overlying drusen-like 
deposits on BM [184].  Other studies confirm the presence of AGEs also in 
the drusen, as well as in the BM, RPE, and choroidal extracellular matrix 
of elderly people [13,185]. AGEs influence the profiles of the ARPE-19 
expression and may contribute to the decrease in the degrative capacity 
of the lysosomal enzyme and increase in the lipofuscin accumulation. 
AGEs formation in the BM may have important consequences for RPE 
dysfunction related to aging and may damage the outer retina [186]. 
AGEs stimulate RPE cells to secrete different anti/proinflammatory 
factors, which trigger the para-inflammation state in RPE cells, that 
is, short-term adaptive RPE cell reaction on AGE stimulation [187]; 
however chronic RPE exposure to AGE favors deregulation of RPE 
function and leads to photoreceptors and RPE cells degeneration and 
atrophy [181]. Oxidative protein modifications like CML, elevated in 
AMD BM, stimulate neovascularization in vivo, suggesting possible 
roles in CNV [188].  Corroborating the findings of this study, it has 
been demonstrated that AGEs can stimulate the proliferation of choroid 
endothelial cells, the expression of matrix metalloproteinase type 2, and 
growth factors such as VEGF [189]. AGEs undergo endocytosis and are 
removed by macrophages [190]. The failure in macrophage recruitment 
may lead to increased RPE exposure with AGEs and damage retinal 
tissue in the pathological angiogenesis process [187]. Several different 
receptors for AGEs have been discovered, one of which, RAGE, 
initiates the intracellular signaling that disrupts cellular function 
through its recognition and binding of AGEs. RAGE is a member of 
the immunoglobulin superfamily of receptors [191-192]. A study with 
300 early AMD patients, 300 patients with exudative AMD, and 800 

healthy controls revealed a significant association between RAGE 
gene rs1800624 and rs1800625 polymorphisms and AMD risk [193].   
AGE-R3, also known as galectin-3, is elevated in AMD BM [194]. In 
vitro studies have shown that AGE-RAGE binding on macrophages 
and microglia leads to oxidant stress and activation of the nuclear 
factor kappa β (NF-κβ) [170,195-196]. Activation of NF-κβ induces 
an increase in the expression of genes associated with inflammatory 
cytokines, enzymes, and adhesion molecules, which, in turn, are 
closely related to AMD [197]. NF-κβ sites control cellular expression 
of RAGE, linking RAGE to the inflammatory response [198]. A study 
performed in vitro in ARPE-19 cells revealed that AGEs increased 
the NF-κβ activation resulting in pro-apoptotic changes in ARPE-19 
cells and that, along with OxLDL, homocysteine (Hcy), homocysteine 
thiolactone (HCTL), they act as pro-oxidant metabolites in RPE that 
promote AMD through oxidative stress, inflammation, chemotaxis, 
and neovascularization [72].

The plasma analysis of 58 AMD and 32 control donors 
demonstrated that CEP was elevated ~86% in the AMD cohort 
and that, in combination with CML and pentosidine, it increases 
the potential use of the biomarker in the risk evaluation of and 
susceptibility to AMD [199]. Another study revealed that the mean 
level of anti-CEP immunoreactivity in AMD human plasma (n = 19 
donors) was 1.5-fold higher than in the age-matched controls (n = 19 
donors). Similarly, the serum from AMD patients demonstrated mean 
titers of anti-CEP autoantibody 2.3-fold higher than controls. It has also 
been observed that out of individuals (n=13) presenting both antigen 
and autoantibody levels above the mean for non-AMD controls, 92% 
had AMD. These results suggest that together CEP immunoreactivity 
and autoantibody titer may have a diagnostic role in predicting AMD 
susceptibility (144). Another analysis called skin autofluorescence (AF), 
a non-invasive marker for AGE in tissues, identified an increase in 
patients with neovascular AMD, suggesting that AMD is accompanied 
by enhanced systemic AGE accumulation, which may indicate a role in 
the pathophysiology of AMD [200]. However, a large population-based 
cohort involving 4,907 older adults revealed that the higher serum 
CML concentration had no significant cross-sectional association with 
prevalent AMD) [201]. 

Biomarkers of nucleic acid oxidation

Aging is associated with slowing down of the efficiency repair of 
DNA, and consequent accumulation of DNA damage [202-203], which 
leads to dysregulation of the cell function, therefore, to aging [206].  This 
oxidative damage to DNA may induce harmful genetic alterations 
[205].   It is known that the oxidative damage to DNA is processed by 
means of the cellular DNA repair systems, whose efficiency may reduce 
with age [205]. These concepts are valid for all body cells, including the 
cells of the retina [206]. It has been shown that AMD patients present a 
significantly higher level of endogenous DNA damage in their peripheral 
blood lymphocytes (PBL) than the control patients and that oxidative 
damage to DNA has contributed to this increase. Simultaneously, a 
higher sensitivity to hydrogen peroxide and to ultraviolet light, as well 
as a slower kinetics of DNA damage repair induced by these mutagenic 
were observed in AMD patients when compared to control patients. 
Additionally, AMD patients presented a larger extent to DNA damage 
than the mean of the general population [206]. 

8-Hydroxy-29-Deoxyguanosine

Oxidation of the nucleic acids, by means of the reaction of the 
hydroxyl radical on the 8-carbon of guanine results in the formation 
of 8-OHdG. This compound, which presents the molecular formula of 
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C10H13O5, is a highly mutagenic molecule, with stable characteristics. 
8-OHdG is one of the most representative products of oxidative damage 
to DNA [207]. It can cross the cell membranes and may be detected in 
urine, serum, plasma, saliva, and tissue samples [33,208]. The increase 
in its levels has been observed in many systemic diseases, as well as 
in several human organs in age-related processes [209-210]. An age-
related increase in oxidative DNA damage product in the intraocular 
fluid has been reported, providing further support that oxidative DNA 
damage is associated with aging [211]. Corroborating this hypothesis, a 
higher level of 8-OHdG in RPE and choroid of adult rats was reported 
when compared with young control groups [212].

In AMD experimental models, the increase of 8-OHdG in the 
retinal tissue was induced by the sub-retinal injection of human lipid 
hydroperoxide (HpODE), a product derived from the sub-macular 
region of elderly and AMD patients [213]. It may also be induced 
genetically [214], using H2O2 in cultured ARPE19 cells [215], induced 
by light [216-217] or the exposure to chronic cigarette smoke [218]. 
In regard to smoking, one of the main modifiable AMD factors, it has 
been demonstrated that exposure of ARPE-19 cells to a cigarette smoke 
concentrate (CSC) not only enhanced ROS levels but also induced 
8-OHdG DNA lesions [219].

8- OHdG  has been used as a marker of the oxidative stress in 
experiments that aimed to assess the antioxidant effects of substances 
such as vitamin D, associated with diphlorethohydroxycarmalol [215], 
astaxanthin [217] and a nutritional complex  [220], as well as to assess 
the neuroprotective effect of SUN N8075 [221].  With this evidence, it 
is possible to affirm that 8-OHdG, the major product of oxidative DNA 
damage [222], is associated with AMD [148,170]. This hypothesis is 
strengthened by findings of increased levels in the 8- OHdG aqueous 
humor of AMD patients when compared with those in control groups 
[223-234]. The same results were observed in the blood serum of AMD 
patients, who presented increased levels of 8-OHdG when compared with 
non-AMD cohorts [170]. The serum levels of 8-OHdG measured in early- 
and late-AMD patients versus healthy controls showed that both early- and 
late-AMD patients had higher 8-OHdG levels than healthy controls (99).

Total oxidant status (TOS)
Total oxidant status (TOS) and total antioxidant status (TAS) 

and oxidative stress index (OSI) are oxidative stress parameters used 
to evaluate the overall oxidative stress status in the body [225]. An 
imbalance between TOS and TAS has been proposed to be responsible 
for the increased lipid, protein and DNA damage observed in AMD 
patients [170]. Serum (or plasma) concentrations of different 
oxidant species can be measured in laboratories separately, but the 
measurements are time-consuming, labor-intensive, and costly and 
require complicated techniques [226]. Since the measurement of 
different oxidant molecules separately is not practical and their oxidant 
effects are additive, the TOS of a sample is measured and it is named total 
peroxide (TP), serum oxidation activity, reactive oxygen metabolites 
(ROM) or some other synonyms [227].  A study with 156 early-AMD 
patients, 80 wet-late AMD, 72 dry-late AMD and 207 healthy controls 
reported that a significantly increased oxidative damage was associated 
with AMD patients >60 years of age of both genders when compared 
with controls. Both early- and late-AMD patients presented higher TOS 
levels than healthy controls [225]. Corroborating these findings, other 
studies also observed a significant increase in TOS levels in the sera of 
AMD patients when compared to controls [170,228-229].

Conclusion
At molecular level, the cell products resultant from the oxidative 

damage in lipids, proteins, carbohydrates, and DNA induce an 

up-regulated expression of inflammatory cytokines, adhesion 
molecules, matrix metalloproteinase type 2, VEGF, decreased PEDF 
expression, NLRP3 inflammasome activation, and NF-κβ activation. 
These molecular alterations are associated with the increase in the 
inflammatory response, endothelial activation, macrophage infiltration 
and consequently stimulate the proliferation of choroid endothelial 
cells. At structural level, the deposit of complement component-3 in 
BM and macrophage infiltration, drusen formation, photoreceptors 
and RPE cells degeneration and atrophy, and the subretinal neovascular 
membrane are observed. Regarding the use of the oxidation products as 
biomarkers in serum, plasma, and urine samples, it has been observed 
that the molecules resultant from the oxidative damage of lipids such as 
MDA, F2-IPs and CEP, as well as the molecules derived from the DNA 
oxidative damage, 8-OHdG, and TOS revealed an important association 
with AMD, and may be considered biomarkers of this disease. It is 
important to point out that because of the presence of the blood-retinal 
barrier, biomarkers might be only locally dysregulated inside the eye 
with no measurable systemic effect. Additionally, aging is a relevant 
point of misunderstanding, as some molecules besides presenting up-
regulation in AMD, are also naturally increased with aging. 
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