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Abstract
Spinal cord injury (SCI) and associated neuropathic pain are among the most complex medical conditions to treat and thus therapies that are consistently effective 
across patient populations do not exist. The development of more effective therapies is hampered by the animal models widely used in SCI research. Currently, spinal 
cord research to advance the discovery and development of novel therapies primarily relies on rodent models that pose significant translational limitations due to 
differences in size and physiology to humans. Swine, in contrast, compare more favorably to humans with respect to spine and spinal cord anatomy and vasculature, 
injury-induced immune response, and functional assessments of pain. Additionally, specific breeds of swine such as the Wisconsin Miniature Swine™ (WMS™) 
possess thoracic spine that is more similar to the human spine in terms of length, vertebral body size, and overall shape, when compared to a conventional breed of 
swine. In the current pilot study, we examine the ex vivo distribution of infusate in the WMS™ spinal cord to demonstrate the reproducibility of infusions and thus 
the suitability of WMS™ for the development of novel SCI therapy delivery platforms such as convection enhanced delivery. Infusions of bromophenol blue dye were 
performed in 3 cadaver spines through the superior intervertebral space via a needle at 4 locations (C6, T2, T10 and L2). Thirty minutes later a laminectomy was 
performed to remove the spinal cord and measure the distance travelled by dye. Spinal cord location of the dye injection had a significant (P < 0.005) effect on the 
diffusion distance of the dye. The reproducibility of infusion data allowed for determination of differences even when using a small number of spines. This pilot study 
indicates the feasibility of using WMS™ as a platform for developing delivery devices.
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Introduction
The annual incidence of spinal cord injury (SCI) in the United 

States is approximately 17,000 with a total prevalence of around 
276,000 patients [1]. Many patients experience loss of motor function, 
neurological deficits, and neuropathic pain (NP). While many 
promising molecular, gene and cell therapies are being explored for 
SCI and NP, advances to clinically relevant solutions are hampered by 
a critical gap that exists in the research and preclinical development 
process. Most SCI and NP research occur in small animal models, such 
as mice [2-5] or rat [6-9] models. While these rodent models have 
led to further understanding of the molecular mechanisms of SCI, no 
therapy shown to be safe and effective in rodent studies has advanced 
through clinical trials and shown convincing efficacy in treating human 
SCI [10].

Direct drug delivery to the spine cannot be accomplished in a 
translatable manner in rodent models.  Small animals do not adequately 
model human SCI due to disproportional spinal cord surface to volume 
ratios. In such models, simple diffusion drives pharmaceutical delivery, 
bathing a large segment of the spinal cord and often producing notable 
effects. However, promising therapies developed in rodents when 
advanced to humans often fail to demonstrate a substantial effect in 
the human spinal cord where simple diffusion does not deliver the 
therapy into portions of the transverse spinal cord. Thus, a relevant 
large animal model of spinal cord pathology is needed to overcome this 
significant translational limitation.

We published an extensive review [11] that concluded swine, 
next to non-human primates, best model humans with respect to (1) 
spine and spinal cord anatomy, (2) spinal vasculature, (3) immune 
responses, and (4) assessment of higher neural function, and thus are 
most suitable for advancing the development of novel therapies and 
delivery systems such as convection enhanced delivery (CED) [12-14]. 
However, previously developed swine models of SCI that generally 
use conventional breeds of swine pose a practical challenge in the 
research setting.

Conventional breeds of swine typically reach 100 kg (220 lb.) by 
4 months of age and 249–306 kg (550–675 lb.) at full maturity [15], 
and are especially problematic for long-term (weeks to months) studies 
of SCI and recovery. In contrast, miniature swine breeds such as the 
Wisconsin Miniature Swine™ (WMS™) range from 25–50 kg (55–110 
lb.) at 4 months of age and 68–91 kg (150–200 lb.) at full maturity, 
approximating the size of an average human, and can be maintained 
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at adult human sizes for several years. We recently characterized the 
WMS™ spine anatomy and showed its similarity to that of humans [16], 
particularly in aspects that are relevant to the development of a CED 
platform and neurocatheters.

With our current pilot study, we examine the ex vivo distribution 
of infusate in the WMS™ spinal cord to evaluate the reproducibility 
of infusions and thus the suitability of WMS™ for the development of 
novel SCI therapy delivery platforms.

Methods
All experiments involving animals were conducted under protocols 

approved by the University of Wisconsin-Madison Institutional Animal 
Care and Use Committee in accordance with published NIH and 
USDA guidelines. Three 5–6 month-old WMS™ (approx. 50 kg) bred 
and maintained at the Swine Research and Teaching Center (SRTC; 
University of Wisconsin-Madison) were euthanized by electrical 
stunning of the brain followed by exsanguination. The WMS™ cadaver 
spines (n=3) were dissected down to the bone tissue prior to infusions; 
this was done to more accurately guide and confirm the positioning of 
the needle at target sites. Needles (28G; 0.36mm) were inserted through 
the superior intervertebral space into the spinal cord at four locations 
on the spine (C6, T2, T10 and L2) and then bromophenol blue dye was 
infused at a constant rate (50µL over 15 seconds) into the cord (Figure 
1). Thirty minutes after infusion, and following a total laminectomy, the 
spinal cord was carefully removed and measurements of dye diffusion 
were taken by 2 independent observers. 

Statistical analysis

A fixed-effects analysis of variance (ANOVA) model was fit for 
the measured parameter (dye diffusion distance) using the PROC 
MIXED function (SAS Software (Version 8), SAS Institute Inc, Cary, 
NC) to test for significant effects of spinal cord location of injection 
on dye diffusion distance. Correlations between observations taken 
on the same spinal cord was modeled using a compound symmetry 
correlation structure. For the measured dependent variable, the model 
was fit using the untransformed data, and the residuals were evaluated 
to ensure that standard ANOVA assumptions of constant variance and 
normality were reasonably met. Transformation of the data was not 
required to improve adherence to these assumptions. Type III tests 
were performed to evaluate significance and least-square means were 
calculated. Any least-square means comparisons made subsequent 
to the Type III tests were adjusted using the Tukey-Kramer p-value 
adjustment. The data is reported as least-square mean ± SEM. Statistical 
significance was accepted at P < 0.05.

Results
The total WMS™ spine length was 583.7 ± 21.5 mm and is 

comparable to published values of humans (mean age: 72 years old 
(55-84 years)) and conventional swine (breed: Landrace, age: 4 months, 
mean weight: 40 kg), which are 569.4 mm and 569.5 mm, respectively 
[17]. The location of bromophenol blue dye injection had a significantly 
effect (P < 0.005) on the distance of dye diffusion (Figure 2). The mean 
distance of diffusion at C6, T2, T10 and L2 were 78.3 ± 8.7 mm, 85.7 ± 
8.8 mm, 65.0 ± 8.7 mm and 61.7 ± 8.7 mm, respectively. The distance 
of diffusion at C6 was significantly greater than those at T10 (P < 0.05) 
and L2 (P  < 0.01); distance of diffusion at T2 was also significantly 
greater than those at T10 (P < 0.01) and L2 (P < 0.005).

Figure 1. [A] Bromophenol blue dye (50 µL over 15 seconds) was injected into WMS 
cadaver spines through the superior intervertebral space with a 28G (0.36mm) needle 
at specified locations. [B] A total laminectomy was performed and the spinal cord was 
removed. [C] Measurements of dye diffusion were made by two independent observers

Figure 2. Distance of dye diffusion 30 minutes after 50 µL injection of bromophenol blue 
dye into the spinal cord at C6 (n=3), T2 (n=2), T10 (n=3) and L2 (n=3) vertebrae locations 
with a 28G (0.36mm) needle. The diffusion distance was significantly (p<0.05) different 
between those at C6 and L2. The data is presented as least square mean ± SEM. Means 
without a common letter statistically differ (P < 0.05). 
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Discussion
The primary finding of the pilot study is that delivery of infusate 

into the WMS™ spinal cord can be done in a reproducible manner, 
suggesting that studies to model targeted therapy delivery parameters 
and distribution are feasible in this swine breed. In addition to the 
human-like size of the breed, the growth rate of the breed is not as 
rapid as that of conventional swine. This is of particularly importance 
to the usefulness of the breed in SCI studies, where the rapidly growing 
spine and spinal cord of conventional swine would not anatomically 
and physiologically model the comparatively static nature of the 
injured spine and spinal cord of a human adult. The size of the WMS™ 
also accommodates the use of clinical imaging modalities such as MRI, 
CT, and PET, which are essential for developing imaging-guided drug 
delivery systems.

Drug-based therapies for SCI and NP management, administered 
intrathecally for example, have limited efficacy in humans [19]. This is 
in part because the mode of delivery does not ensure that the therapies 
reach the targeted region in the spinal cord. Systemic delivery of a 
promising agent is hampered by the blood/spinal cord barrier, while 
intrathecal delivery does not allow sufficient diffusion of the agent 
to the specific site of injury. There is a large unmet need to target, 
visualize, and control delivery in humans to specific white and gray 
matter spinal cord fascicles to generate the desired treatment while 
avoiding undesired side effects. CED is also being pursued for many 
brain-based pathologies and our group has previously optimized CED 
parameters (e.g., backflow, infusion cloud morphology, and volume of 
distribution) for brain in vitro, ex vivo, and in vivo with non-human 
primates [13,20-23]. The advantage of CED is its potential for delivering 
therapeutic agents to a larger (rostral-caudal) portion of the dorsal gray 
matter. The interstitial space within white matter is less dense than in 
gray matter which makes it difficult to target specific regions within the 
spinal cord thus affecting the efficacy and accuracy of infusion. CED 
uses continuous positive pressure gradients that expands the interstitial 
space and increases fluid penetrance. It offers efficient, targeted, 
homogeneously dispersed infusions within the spinal cord using a 
minimally invasive procedure while preserving the health and integrity 
of the tissues. For example, in this study, we observed significantly 
greater dye diffusion distances at C6 and T2. This may be due to the 
greater number of white matter tracts in superior regions of the spinal 
cord. Longitudinal white matter tracts provide less resistance to fluid 
movement than the denser gray matter of the spinal cord [18]. CED 
may provide the ability to overcome differences in passive diffusion 
rates that exist in different segments of the spinal cord. However, as 
this is a pilot study (i.e., the study used spines from only three swine), 
care should be taken in making broad inferences about the results.

A reliable and translational model, such as the WMS™, is vital 
for advancing the development of CED into the spinal cord. The 
development of CED also involves the concurrent development 
of several other technologies and techniques. These include the 
development of MRI-guided minimally invasive surgical devices 
for guiding specially-designed neurocatheters into the spinal cord at 
desired locations and MRI–guidance protocols to quantitatively assess 
infusion into SC gray matter and minimize migration along the white 
matter tracts. Additionally, improved understanding of fluid dynamics 
within the nervous tissue is needed to refine MRI software that can 
predict, monitor, and alter CED infusions in real-time to create 
ellipsoidal treatment zones along a tracts of the spinal cord [24-27].
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