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Abstract
Embryonic stem cells (ESCs) are derived from the inner-cell-mass (ICM) of blastocysts. ESC and induced pluripotent stem cell (iPSC) lines are immortal, meaning 
that they have unlimited proliferation potential. They are also pluripotent; that is, they can differentiate into lineages derived from all 3 major germ layers of the 
embryo. Consequently, these cells have been widely investigated in the development of regenerative medicine therapies. Human ESCs have been regarded as 
important research tools for the investigation into early development of the human embryo. 

Mitochondria are the powerhouses capable of providing the majority of energy within the cell and performing important metabolic functions such as the Krebs 
cycle. The well-known endosymbiotic theory [1] has suggested that the mitochondrion was originally derived from a prokaryotic cell that invaded a larger, nucleated 
host cell. Mitochondria indeed contain their own mitochondrial DNA (mtDNA) in a circular form, similar to the bacterial genome. Mitochondrial genomes encode 
several essential genes of the eukaryotic respiratory machinery. However, most of the components of the respiratory machinery and factors controlling mitochondrial 
biogenesis are encoded in the nucleus. The cooperation and communication between mitochondria and nuclei are conducted by retrograde signals, such as energy 
supply and redox signaling and this currently poorly-understood communication is essential for balancing energy production and demand in the cell. Targeting 
mitochondria metabolism for inherited disease by using pluripotent stem cells is still a major therapeutic direction for cell therapy.

Correspondence to: Li-Pin Kao, Department of Basic Medical Sciences, Purdue 
University, West Lafayette, Indiana, USA; Centre for Cancer Research, Purdue 
University, West Lafayette, Indiana, USA; Australian Institute for Bioengineering 
and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia, 
E-mail: kaolipin@gmail.com

Key words: pluripotent stem cells, human embryonic stem cells 

Received: October 02, 2017; Accepted: October 16, 2017; Published: October 18, 
2017

Human pluripotent stem cells 
Stem cells are endowed with a unique capacity for self-renewal [2]. 

In mammalian development, fertilized oocytes are able to differentiate 
into all types of cells and are thus classified as totipotent. ‘Totipotent’ 
is derived from the Latin totus, which means ‘entire’. A totipotent stem 
cell has the ability to generate all cell types found in the embryo and 
in extra-embryonic tissues. Fertilized oocytes divide and progress into 
8-cell embryos and then blastocysts. Blastocysts are composed of an 
outer layer of cells, called trophoblasts, and inner cells, which form the 
inner cell mass (ICM). The ICM can develop into all cell types of the 
adult body and is therefore called ‘pluripotent’, a term derived from the 
Latin plures, meaning ‘several’ or ‘many’. Pluripotent stem cells, such 
as mouse embryonic stem cells (mESCs), human embryonic stem cells 
(hESCs), and induced pluripotent stem cells (iPSCs), can differentiate 
into ectoderm, mesoderm, endoderm, and germ cells [3].

Once blastocyst-derived cells have fully differentiated into tissues 
or organs, stem cells that reside in various tissues and organs remain in 
order to generate new tissue or repair damaged tissue. These stem cells, 
known as multipotent stem cells or adult stem cells (ASCs), include 
mesenchymal stem (or stromal) cells (MSCs) and hematopoietic stem 
cells (HSCs). Their differentiation ability is limited compared to that of 
totipotent and pluripotent cells. For example, hematopoietic stem cells, 
which are found in bone marrow, can differentiate into erythrocytes 
and white blood cells (including macrophages). These types of cells are 
important for homeostasis because they enable the steady self-renewal 
of tissue. 

There are different types of pluripotent stem cells: embryonic stem 
cells (ESCs), induced pluripotent stem cells (iPSCs), embryonic germ 
cells (EGCs), and embryonic carcinoma cells (ECCs). ESCs are isolated 
from the ICM of the blastocyst (Figure 1) [4], whereas iPSCs are 

artificially generated by reprogramming somatic cells using a defined 
set of transcription factors. iPSCs are similar to hESCs in morphology, 
gene expression, and differentiation ability [5]. Human embryonic 
germ cells (hEGCs) are derived from the primordial germ cells (PGCs) 
and are pluripotent stem cells [6]. Embryonic carcinoma cells (ECCs) 

Figure 1. hESC isolation and culture procedures. hESCs are derived from the inner cell 
mass of the blastocyst (left). For long-term culture, hESCs are grown on inactivated mouse 
embryonic fibroblasts used as a feeder layer [13].
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are stem cells derived from teratocarcinomas, which are tumors that 
arise from embryonic tissues such as those from the testis or ovary, or 
from cultures of explanted cells [7]. ECCs are considered the malignant 
counterparts of hESCs. 

Embryonic stem cells (ESCs) and induced pluripotent 
stem cells (iPSCs)

Evans and Kaufman (1981) were the first to derive ESCs from an 
early mouse embryo [8]. In 1998, Thomson and colleagues reported 
the first successful derivation of hESC lines [9]; these lines are still 
widely used. They are capable of proliferating extensively in their 
undifferentiated state in vitro and have the ability to differentiate 
into all three germ layers [6,10]. The embryo-derived hESCs were 
established from blastocysts discarded during in vitro fertilization 
(IVF) procedures.

iPSCs are an artificially generated type of pluripotent stem cell. 
iPSCs are reprogrammed from adult somatic cells to acquire stem 
cell-like properties through the forced expression of a combination 
of transcription factors, such as Oct4, Sox2, Nanog, c-myc, KLF4, and 
Lin28. Takahashi and Yamanaka introduced four pluripotent genes-
Oct4, Sox2, c-myc, and Kruppel-like family transcription factor 4 
(Klf4)—that could reprogram mouse fibroblasts into mouse-induced 
pluripotent stem cells (miESCs) or human fibroblasts into human-
induced pluripotent stem cells (hiPSCs) [11]. Thomson and colleagues 
used Oct4 and Sox2 in combination with Nanog and Lin-28 homolog 
(Lin28), instead of c-myc and Klf4, to reprogram human fibroblasts 
into hiPSCs [12]. These iPSCs express stem cell markers and can 
differentiate into three germ layers in a teratoma in vivo. 

iPSCs have the advantage that they do not require the destruction 
of an embryo. Moreover, given their origin, they provide a perfect 
match to the cell donor (are fully isogenic) and thus would likely avoid 
rejection by the donor’s immune system.

Characterization of undifferentiated hESCs
Undifferentiated hESCs express high levels of cell surface antigens 

that can be used as stem cell-specific pluripotency markers. These 
antigens include: (1) glycolipids, such as the stage-specific embryonic 
antigens SSEA-3 and SSEA-4 [14]; (2) glycoproteins, such as TRA-
1-60 and TRA-1-81 [15]; and (3) alkaline phosphatase [4,16,17]. 
Pluripotency markers include the transcription factors Octamer-4, 
POU domain, class 5, transcription factor 1 (OCT4 or POU5F1) 
[18-20]; sex-determining region Y-box 2 (SOX2) [21]; and Nanog 
homeobox (NANOG) [22,23].These molecular markers provide a 
means of identifying pluripotent stem cells, and a decrease in their 
expression can be used to monitor the onset of differentiation. The 
molecular mechanisms underlying the self-renewal of hESCs have not 
been fully elucidated. 

Gene expression analysis of hESCs
Investigating gene expression in various stem cell lines could 

give important insights into how stem cells control pluripotency 
and differentiation. A number of studies have measured hESC gene 
expression to investigate related molecular mechanisms and have 
reported differential gene expression in different hESC lines. Rao and 
Stic (2004) reported a 75% similarity in the microarray profiles of two 
lines; in a another study, 48% of the expressed genes were restricted 
to one or two lines [24]. However, variations in gene expression have 
been observed in hESC lines derived within the same laboratory 

[25] and even in the same hESC lines (38%) after three passages in 
different media [26]. Gene expression also changes during spontaneous 
differentiation [27]. For example, the expression of leukemia inhibitory 
factor (LIF) and its receptors is low in undifferentiated hESCs, but 
increases during differentiation. Differential DNA methylation of 
pluripotency-associated promoters such as NANOG and OCT4/
POU5F1 has been observed in pluripotent and differentiated cells. 
Understanding gene expression in hESCs will help shed light on the 
molecular basis of normal differentiation and the abnormal processes 
that underlie human developmental disorders.

Several external signals that maintain stem cell pluripotency have 
been characterized. External signals are also thought to play important 
roles in the regulation of ESC self-renewal and differentiation. For 
example, the pluripotency of hESCs is maintained by several signaling 
pathways [28];

• The Fibroblast Growth Factor (FGF) Signaling Pathway

Exogenous bFGF is an essential factor in a defined hESC culture 
medium used for the maintenance of undifferentiated hESCs and 
hiPSCs in vitro. Withdrawal of bFGF induces the downregulation of 
pluripotency markers and the differentiation of hESCs. This suggests 
that FGF signaling plays an important role in self-renewal and 
pluripotency regulation in human ES cells and iPSCs [29,30]

• The Transforming Growth Factor-β (TGF-β)/Activin/Nodal-
SMAD2/3 Signaling Pathway

The TGF-β/Activin/Nodal branch is highly active in undifferentiated 
hESCs. The pathway supports the self-renewal of undifferentiated 
hESCs by activating SMAD2/3 and inducing the expression of the 
pluripotency markers Oct4 and Nanog [31,32]. The TGF-β/Activin/
Nodal-SMAD2/3 signaling pathway is important in maintaining the 
self-renewal and pluripotency of hESCs [33].

• The Phosphoinositide-3-Kinase (PI3K) Signaling Pathway

The PI3K protein is highly expressed in undifferentiated cells and 
is downregulated in differentiated ESCs [34,35]. Blocking the PI3K 
signaling pathway with the PI3K inhibitor LY294002 results in the loss 
of pluripotency markers and initiates cellular differentiation [36]. In 
addition, activation of the PI3K signaling pathway induces the PI3K-
dependent phosphorylation of PKB/Akt and GSK-3α/β proteins.

Propagation of undifferentiated hESCs
Initially, hESCs were grown on irradiated mouse feeders or human 

foreskin fibroblasts [37]. However, exposure to animal-derived culture 
constituents is a drawback of the feeder-dependent systems [38]. Given 
that hESCs and hiPSCs are attractive candidates for future human 
cell transplantation, it is important to optimize good manufacturing 
practice (GMP)-compliant systems for the derivation, scale-up, 
and banking of cells and their corresponding quality assurance 
controls [39,40]. Therefore feeder-free systems are increasingly used 
in combination with xeno-free defined culture medium and GMP-
compliant coating substrates specially designed for hESC growth [41], 
including laminin and fibronectin. 

Pluripotent stem cell differentiation
In vitro and in vivo, hES and iPS cells can differentiate into cell 

types from the three primitive germ layers: ectoderm, mesoderm, and 
endoderm [4,6,16] (Figure 2). The differentiation capacity of these cells 
is typically tested by assessing their spontaneous differentiation in cell 
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culture (i.e. in vitro formation of embryonic bodies or EBs). Upon the 
removal of growth factor (e.g. bFGF) or feeder layers and/or transfer 
to suspension conditions, hESCs undergo spontaneous unguided 
differentiation into various cells representative of the different germ 
layers. In two-dimensional (2D) spontaneously differentiated hESCs, 
the different morphologies appeared to be epithelial cells, neural cells 
with axons and dendrites, and cells with mesenchymal characteristics 
[42]. In suspension, the hESCs form multicellular aggregates of 
differentiated and undifferentiated cells called embryoid bodies (EBs), 
which resemble early post-implantation embryos and frequently 
progress through a series of differentiation stages [37,43,44]. Typically, 
EBs are allowed to grow for several days or weeks, with samples taken 
at intervals for analysis via flow cytometry or immunocytochemical 
staining. In vitro and in vivo assessments of differentiation involve 
determining whether the derived cells have acquired a variety of 
ectoderm-, mesoderm-, and endoderm-like properties (and loss of 
markers for pluripotency). In vivo assessment of pluripotency is 
performed by xenografting hESCs and iPSCs into severe combined 
immune-deficient (SCID) mice and observing the formation of 
teratomas with derivatives of all three germ layers, which indicates that 
the injected stem cells have the ability to differentiation along three 
lineages [4,16]. 

Directed differentiation
To direct the differentiation of ESCs towards a particular cell type, 

such as a neuronal cell type or a cardiomyocyte cell type, hESCs in 
monolayer culture are exposed to certain growth factors or stimuli and 

extracellular matrix components, either directly or indirectly through 
feeder cells [45].

Retinoic acid (RA) induces human embryonic stem cells to 
differentiate into the ectodermic lineage [46]. RA and its receptors 
play important roles in the development of the central nervous system 
by initiating the cellular differentiation of neuronal precursors [47]. 
Several papers have reported that RA induces neuronal differentiation 
in neuroblastoma cell lines (SH-SY5Y human dopaminergic 
neuroblastoma cells) [48,49] and human promyelocytic leukemia 
HL-60 cells [50]. Further, RA also induces embryonic stem cells to 
differentiate into neuronal cells [46,51,52], including neurons and glial 
cells. In order to improve the efficiency and reproducibility of neuronal 
differentiation, several studies have attempted to add small molecules. 
For example, Idelson M, et al. have demonstrated that nicotinamide 
promotes the differentiation of hESCs into neural cells and subsequently 
into retinal pigment epithelium (RPE) cells [53]. Moreover, Lu SJ, et al. 
have described a robust system that efficiently generates large numbers 
of hemangioblasts from multiple hESC lines and produces functional 
homogeneous RBCs with oxygen-carrying capacity on a large scale 
[54]. The markers of early ectodermdifferentiation are paired box gene 
6 (PAX6), SRY (sex determining region Y)-box 1 (SOX1), nesting, and 
glial fibrillary acidic protein (GFAP). Briggs JA, et al. have demonstrated 
successful neuronal differentiation via a sophisticated protocol [55].

Mesoderm differentiation has been extensively studied, particularly 
the families of protein growth factors that control the early stages of 
mesoderm formation in cardiomyocytes [56]. Hudson J, et al. have 
used small molecules to target the wingless/INT (Wnt) signaling 

Figure 2. Undifferentiated hES cells (A) can give rise to cell types from the three primitive germ layers: (B) neuronal cells in ectoderm-lineage differentiation, (C) pancreatic cells in 
endoderm-lineage differentiation, and (D) cardiomyocytes in mesoderm-lineage differentiation. This figure is adapted from Hoffman and Carpenter 2005 [13].

http://www.ncbi.nlm.nih.gov/pubmed?term=Lu SJ%5BAuthor%5D&cauthor=true&cauthor_uid=20336519
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pathway in order to induce the differentiation of hESCs into beating 
cardiomyocytes [57]. Biomarkers for early mesoderm-differentiation 
include T-box factor Brachyury (BRY or T), the homeodomain protein 
MIXL1, and myosin [57]

Endoderm differentiation forms several tissues, including the liver, 
lung, thyroid, and foregut endoderm. The families of protein growth 
factors that control the early stage of endoderm differentiation into 
the anterior-ventral domain of the foregut endoderm are targeted 
by signaling through Nodal, a member of the transforming growth 
factor-B (TGF-B) superfamily and the SMAD signaling pathway 
[58]. The biomarkers of early endoderm differentiation are insulin-
like growth factor 2 (IGF2) and gata binding factor (GATA4); SRY 
(sex determining region Y)-box 17 (SOX17) is also an indicator of 
the definitive foregut endoderm (Kanai-Azuma, Kanai, et al. 2002, 
Nakanishi, Kurisaki, et al. 2009). Little is known about the expression 
of mitochondrial biogenesis-related genes during hESC lineage-specific 
differentiation.

Mitochondrial dysfunction 
The symptoms of mitochondrial dysfunction caused by mutations 

or deletions in the mitochondrial genome or by mitochondrial depletion 
can be observed in whole animals and cellular models. Several studies 
have described mice with abnormal mitochondria resulting from 
mutations or deletions in the mitochondrial genome. To demonstrate 
the importance of mitochondrial morphology and function in cell-
specific functions, we have established the mitochondria-depleted 
cells called rho-zero cells (ρ˚), which are depleted of mtDNA, were 
generated in vitro through the application of different drugs, such as 
ethidium bromide, antibiotics [59], or the nucleoside analogue reverse 
transcriptase inhibitor (NARTI, an anti-HIV drug). ρ˚ cells exhibit 
several common features: (1) they become autotrophic, relying on 
pyrimidine (uridine) and pyruvate supplementation for cell growth 
[60,61]; (2) they have a low mtDNA copy number and low expression 
of mitochondrial-encoded genes, but not of nuclear-encoded genes; (3) 
they have low mitochondrial respiratory chain complex activities, with 
the exception of complex II; (4) they have low ATP concentrations, 
respiration rates (oxygen consumption), and mitochondrial membrane 
potential; (5) they shift from aerobic to anaerobic metabolism if given 
supplemental pyruvate; and (6) they have an immature mitochondrial 
structure with reduced numbers of cristae membranes, circular 
morphology, and loss of tubular structure. 

Upon a reduction in oxygen consumption, several studies have 
found that antioxidants can reverse the increased ROS production in 
ρ˚ cells. In addition, ρ˚ cells have decreased levels of cell proliferation, 
mitotic cyclin gene expression, cyclin-dependent kinase inhibitors, 
retinoblastoma 1 phosphorylation, and telomerase activity [62,63]. 
In ρ˚ cells, upregulation of mitochondrial biogenesis-related genes, 
relative to expression in control cells, has been observed [64,65].

Interestingly, it has been suggested that ρ˚ cells have increased 
resistance to apoptosis. However, they exhibit a normal distribution 
of cytochrome c within mitochondria during staurosporine-induced 
apoptosis (in spite of low mtDNA levels and respiratory function 
deficiencies). Consistently, caspase 3 activation and DNA fragmentation 
are not affected in ρ˚ cells. However, the localization of NF-κB is altered 
(i.e. more NF-κB in the nucleus than in the cytoplasm), which might be 
related to the observed resistance to apoptosis. Moreover, in ρ˚ cells, a 
greater amount of mass is associated with lysosome and peroxidation 
production [65-67]. Remarkably, the differentiation of SH-SY5Y 
neuroblastoma cells into neuron-like cells is not affected by defective 

mitochondria, as indicated by the presence of long neurites and 
secretory granules, which are typical of differentiating neuroblastoma 
cells [68]. Therefore, targeting mitochondria metabolism or mutations 
in mitochondrial-related genes for inherited disease by using 
pluripotent stem cells is still a major therapeutic direction for cell 
therapy.
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