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The common cold is frequently associated with anosmia. A
significant portion of COVID-19 patients has been reported to have
anosmia and taste dysfunction [1]. A recent study from Germany found
that among confirmed COVID-19 patients 47% had anosmia with a
mean duration of anosmia of 8.9 days as well as an association with
dysgeusia in 85% of cases [2].

There are multiple proposals for the pathogenesis of anosmia during
COVID-19 including the direct and indirect toxic effect of SARS-
CoV-2 on neuronal cells [3] and toxicity to non-neuronal supportive
cells such as olfactory epithelium sustentacular cells, microvillar cells
and olfactory bulb pericytes [4,5].

Here we propose that infections with coronaviruses including
SARS-CoV-2 induce host immune responses in the nasopharyngeal
mucosa; which may lead to local zinc deficiency and consequently
transient anosmia and poor taste.

Zinc (Zn) is an essential micronutrient and is the second most
abundant metal in the human body, with 2 to 4 grams distributed
throughout the whole body. Zinc is generally taken in through food
or breast milk, is absorbed via several intestinal Zn transporters,
and is released into the bloodstream. It is required for cell growth,
differentiation, and survival and approximately 10% of the entire
human genome can potentially bind Zn through Zn-finger motifs [6].
Dietary Zn deficiency is common globally and causes thymic atrophy
and depresses both innate and adaptive immune responses [7]. Zinc is
a cofactor for proteins, it affects the structural and catalytic functions of
enzymes and transcription factors and acts as a second messenger [8].
Zn homeostasis is tightly controlled by the coordinated activity of Zn
transporters and metallothioneins and Zn itself behaves like a signaling
molecule in response to extracellular stimuli.

Zinc deficiency is well known to cause anosmia and taste
dysfunction. This is because one of the enzymes critical to maintain
taste and smell function is a zinc dependent metalloenzyme called
carbonic anhydrase (CA) [9]. Interestingly, different formulations
of intranasal Zn have also been shown to cause anosmia, but the
mechanisms for toxicity are complex, including oxidative stress, ATP
depletion, cytoskeletal changes and apoptosis of olfactory neuronal
cells, and is affected by many factors, such as concentration of zinc
tested, the length of exposure, the cell type, and the presence of other
toxic chemicals [10].

Myeloid and lymphoid cells manipulate intracellular and
extracellular zinc metabolism via Zn binding proteins and transporters
in response to immunological signals and infections [11]. Zinc is
considered an acute phase reactant and Zn levels are redistributed
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during infection [12]. Systemic Zn deficiency is associated with
decreased Thl cytokines, interferon-gamma and interleukin (IL)-2,
and unchanged production of Th2 cytokines (IL-4, IL-6, and IL-10);
which causes a shift in Thl to Th2 balance towards Th2 cytokine
predominance [13].

Cellular Zn is important for viral replication, and chelation
experiments have shown that decreases in Zn levels inhibit the
replication of human immunodeficiency virus (HIV) and dengue fever
virus [12]. Acute viral infection of the nasopharyngeal mucosa may
lead to a decrease in local Zn level and this was proposed to be a part of
normal host defense against respiratory pathogens [14].

Local shift in Zn homeostasis in the nose during common colds may
lead to alocal Th2 phenotype and may explain increased sneezing during
colds. Sneezing is a protective reflex where air in the lungs is expelled
out in reaction to an irritation in the nose. Sneezing may be an indicator
of local Zn deficiency. Rhinovirus is the pathogen most frequently
associated with common cold; once rhinovirus enters inside the nasal
epithelial cell, there is no increase in the number of inflammatory cells,
but neutrophils increase in the nasal mucosa and mucous secretions
[15,16]. This may be due to Th 2 predominant immune responses
such as kinins, leukotrienes, histamines, interleukin-1, interleukin-6
interleukin-8, tumor necrosis factor and RANTES (regulated by
activation normal T-cell expressed and secreted); which can explain
disease symptoms [17-19].

Early Th2 immune responses in the nasopharynx during viral
upper respiratory tract infections may be protective. Th2 cytokines have
also been shown to decrease the expression of SARS-CoV-2 receptor,
angiotensin converting enzyme 2 (ACE-2) expression locally [20].
Reduced ACE-2 expression may be a part of host response to inhibit
viral infection of neighboring cells in the nasopharynx.

Earlier studies with SARS-CoV have shown that in infected
cells intracellular Zn may inhibit SARS-CoV RNA-dependent RNA
polymerase (RdRp) elongation [21]. Chelation with magnesium EDTA
reverses Zn effect on SARS-CoV RdRp. Zinc ions have also been
shown to inhibit the proteolytic processing of replicase polyproteins in
coronavirus infected cells [22].
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There is no data that show that Zn supplementation prevents viral
infections, and the data on the effectiveness of Zn to treat common
cold is heterogeneous [23,24]. We propose that an appropriate local
host immune response to acute SARS-CoV-2 infection may include a
change in nasopharyngeal Zn balance that leads to Th2 predominant
immune response with reduced ACE-2 expression, sneezing, anosmia
and poor taste. Nasal mucosa is in continuum with the larger mucosal
system (gastrointestinal (GI), respiratory, urinary, and genital tracts)
[25]. In animal models, activation of nasal mucosa by viral antigens
was shown to prime the immune environment in the lungs by
increasing the infiltration with activated macrophages in the absence
of direct pulmonary infection [25]. Anosmia in COVID-19 patients
may be an indicator of COVID-19 prognosis. Yan CH and colleagues
from University of California San Diego observed that patients with
anosmia were less likely to require hospitalization and that COVID-19
resolved together with the resolution of anosmia [26]. Another study
from Iran suggested that patients with anosmia were less likely to have
fever, cough and dyspnea compared to those without anosmia (87.9%
vs 37.38%, 67.7% vs 18.98% and 18.6% vs 14.38% respectively) and
hospitalization rate was low (1.1%) among patients with anosmia [27].

Data from coronavirus seroconversion studies have also shown
that nasal immunoglobulin responses are important in controlling
the virus replication and disease severity [28]. Data is needed on
the relationship between occurrence of anosmia and nasal anti-
SARS-CoV-2 immune responses as well as COVID-19 severity and
prognosis. Better understanding of the mechanisms of anosmia may
also help develop criteria for early anti-viral, convalescent plasma or
antibody treatment.
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