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Proposed mechanism for anosmia during COVID-19: The 
role of local zinc distribution
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The common cold is frequently associated with anosmia. A 
significant portion of COVID-19 patients has been reported to have 
anosmia and taste dysfunction [1]. A recent study from Germany found 
that among confirmed COVID-19 patients 47% had anosmia with a 
mean duration of anosmia of 8.9 days as well as an association with 
dysgeusia in 85% of cases [2].

There are multiple proposals for the pathogenesis of anosmia during 
COVID-19 including the direct and indirect toxic effect of SARS-
CoV-2 on neuronal cells [3] and toxicity to non-neuronal supportive 
cells such as olfactory epithelium sustentacular cells, microvillar cells 
and olfactory bulb pericytes [4,5]. 

Here we propose that infections with coronaviruses including 
SARS-CoV-2 induce host immune responses in the nasopharyngeal 
mucosa; which may lead to local zinc deficiency and consequently 
transient anosmia and poor taste. 

Zinc (Zn) is an essential micronutrient and is the second most 
abundant metal in the human body, with 2 to 4 grams distributed 
throughout the whole body. Zinc is generally taken in through food 
or breast milk, is absorbed via several intestinal Zn transporters, 
and is released into the bloodstream. It is required for cell growth, 
differentiation, and survival and approximately 10% of the entire 
human genome can potentially bind Zn through Zn-finger motifs [6]. 
Dietary Zn deficiency is common globally and causes thymic atrophy 
and depresses both innate and adaptive immune responses [7]. Zinc is 
a cofactor for proteins, it affects the structural and catalytic functions of 
enzymes and transcription factors and acts as a second messenger [8]. 
Zn homeostasis is tightly controlled by the coordinated activity of Zn 
transporters and metallothioneins and Zn itself behaves like a signaling 
molecule in response to extracellular stimuli. 

Zinc deficiency is well known to cause anosmia and taste 
dysfunction. This is because one of the enzymes critical to maintain 
taste and smell function is a zinc dependent metalloenzyme called 
carbonic anhydrase (CA) [9]. Interestingly, different formulations 
of intranasal Zn have also been shown to cause anosmia, but the 
mechanisms for toxicity are complex, including oxidative stress, ATP 
depletion, cytoskeletal changes and apoptosis of olfactory neuronal 
cells, and is affected by many factors, such as concentration of zinc 
tested, the length of exposure, the cell type, and the presence of other 
toxic chemicals [10]. 

Myeloid and lymphoid cells manipulate intracellular and 
extracellular zinc metabolism via Zn binding proteins and transporters 
in response to immunological signals and infections [11]. Zinc is 
considered an acute phase reactant and Zn levels are redistributed 

during infection [12]. Systemic Zn deficiency is associated with 
decreased Th1 cytokines, interferon-gamma and interleukin (IL)-2, 
and unchanged production of Th2 cytokines (IL-4, IL-6, and IL-10); 
which causes a shift in Th1 to Th2 balance towards Th2 cytokine 
predominance [13]. 

Cellular Zn is important for viral replication, and chelation 
experiments have shown that decreases in Zn levels inhibit the 
replication of human immunodeficiency virus (HIV) and dengue fever 
virus [12]. Acute viral infection of the nasopharyngeal mucosa may 
lead to a decrease in local Zn level and this was proposed to be a part of 
normal host defense against respiratory pathogens [14]. 

Local shift in Zn homeostasis in the nose during common colds may 
lead to a local Th2 phenotype and may explain increased sneezing during 
colds. Sneezing is a protective reflex where air in the lungs is expelled 
out in reaction to an irritation in the nose. Sneezing may be an indicator 
of local Zn deficiency. Rhinovirus is the pathogen most frequently 
associated with common cold; once rhinovirus enters inside the nasal 
epithelial cell, there is no increase in the number of inflammatory cells, 
but neutrophils increase in the nasal mucosa and mucous secretions 
[15,16]. This may be due to Th 2 predominant immune responses 
such as kinins, leukotrienes, histamines, interleukin-1, interleukin-6 
interleukin-8, tumor necrosis factor and RANTES (regulated by 
activation normal T-cell expressed and secreted); which can explain 
disease symptoms [17-19]. 

Early Th2 immune responses in the nasopharynx during viral 
upper respiratory tract infections may be protective. Th2 cytokines have 
also been shown to decrease the expression of SARS-CoV-2 receptor, 
angiotensin converting enzyme 2 (ACE-2) expression locally [20]. 
Reduced ACE-2 expression may be a part of host response to inhibit 
viral infection of neighboring cells in the nasopharynx. 

Earlier studies with SARS-CoV have shown that in infected 
cells intracellular Zn may inhibit SARS-CoV RNA-dependent RNA 
polymerase (RdRp) elongation [21]. Chelation with magnesium EDTA 
reverses Zn effect on SARS-CoV RdRp. Zinc ions have also been 
shown to inhibit the proteolytic processing of replicase polyproteins in 
coronavirus infected cells [22].
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There is no data that show that Zn supplementation prevents viral 
infections, and the data on the effectiveness of Zn to treat common 
cold is heterogeneous [23,24]. We propose that an appropriate local 
host immune response to acute SARS-CoV-2 infection may include a 
change in nasopharyngeal Zn balance that leads to Th2 predominant 
immune response with reduced ACE-2 expression, sneezing, anosmia 
and poor taste. Nasal mucosa is in continuum with the larger mucosal 
system (gastrointestinal (GI), respiratory, urinary, and genital tracts) 
[25]. In animal models, activation of nasal mucosa by viral antigens 
was shown to prime the immune environment in the lungs by 
increasing the infiltration with activated macrophages in the absence 
of direct pulmonary infection [25]. Anosmia in COVID-19 patients 
may be an indicator of COVID-19 prognosis. Yan CH and colleagues 
from University of California San Diego observed that patients with 
anosmia were less likely to require hospitalization and that COVID-19 
resolved together with the resolution of anosmia [26]. Another study 
from Iran suggested that patients with anosmia were less likely to have 
fever, cough and dyspnea compared to those without anosmia (87.9% 
vs 37.38%, 67.7% vs 18.98% and 18.6% vs 14.38% respectively) and 
hospitalization rate was low (1.1%) among patients with anosmia [27]. 

Data from coronavirus seroconversion studies have also shown 
that nasal immunoglobulin responses are important in controlling 
the virus replication and disease severity [28]. Data is needed on 
the relationship between occurrence of anosmia and nasal anti-
SARS-CoV-2 immune responses as well as COVID-19 severity and 
prognosis. Better understanding of the mechanisms of anosmia may 
also help develop criteria for early anti-viral, convalescent plasma or 
antibody treatment.
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