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Abstract

Walking upright freed the hands for carrying and manipulating tools. This complex bimanual coordinative ability may have been an essential step to lead our
ancestors' brains to grow. The current review aims to tackle the state-of-the-art control mechanisms in kinematics and motor control perspectives during performing
bimanual multijoints coordinative movements. The endeavor is to delineate possible principles from task goals, manipulations and modules, related brain activation
and connectivity perspectives, and benefits and limits of considered modules to apply these principles to improve the life quality of people with movement disorder

diseases and people who want to be healthier.

About six million years ago, Sahelanthropus may have walked
on two legs. Becoming bipedal, walking upright freed the hands for
carrying and manipulating tools. This complex bimanual coordinative
ability may have been an essential step to lead our ancestors' brains
to grow. In daily life, the ability to master objects such as weapons,
tools, stationaries etc. by strong and agile upper limbs is revolutionary
throughout the human evolution.

The hierarchy of constraints in bimanual coordination: Bimanual
multijoints coordinative activities have been studied at many levels of
the cognitive and motor systems. Three paradigms, including drawing
tasks with direct objectives using pens or styluses in both hands, e.g.,
circle [1-6], star-line, etc. [7-12], bimanual tasks with abstract temporal
and spatial objectives employing manipulanda [13] and joy sticks [14],
and freehand bimanual multijoints coordinative tasks have been utilized
to study the representation of bimanual actions [15-17]. As a unique
evolutional landmark, writing and drawing are mostly a unilateral task.
Therefore, intensive training of non-dominant hand to handle a pen
or stylus is often needed to minimize the unequal motor capability
as compared to the skillful dominant hand. The other two paradigms
well compromise the unequal skillfulness of both hands by applying
unified devices or focusing on pure joint/limb movements. In the
past few decades, research findings in bimanual coordination suggest
a coalition of constraints in bimanual coordination. The identified
constraints cover from cognitive or perceptual to neuromuscular level,
which are centered by network-level perception-action interactions
of the CNS [18]. Among these bimanual coordination constraints,
the neuromuscular constraint is defined as the relative timing of
homologous muscle activation. Relative phase (@), subtraction of the
phase angle of each limb at each measurable time point during cyclic
movement, serves as a measure of two-limb-coordination. In-phase
motion (IN, ® = 0°) refers to moving the fingers, wrists, or forearms
inwards and outwards from the body midline simultaneously activate
homologous muscle groups. Anti-phase motion (AN, ® = 180°) means
that homologous muscle groups are activated in alternation. In-phase
is more stable than anti-phase in bimanual coordination. The higher
the movement speed goes, the more differential stability between both
coordination modes becomes [19,20]. These coordination modes
are generic as they are evident across different movement effectors.
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Directional constraint results in stable patterns when two-single-joints
move in the same direction without muscle homology, for example,
anti-phase motion in bimanual coordination. Another example is
that iso-directional movement of elbow and wrist within an arm
(ISO, simultaneous flexion and extension of elbow and wrist) is more
stable than noniso-directional movement (NISO, elbow flexion with
simultaneous wrist extension or vice versa). Our work in 2004 revealed
that neuromuscular constraint is dominant over perceptual constraints
by directly comparing two constraints within a study. In that study,
healthy young volunteers performed well controlled bimanual wrist
coordinative movement with a set of conditions composed by palm-
up or palm-down combinations [21]. Other constraints identified by
iso- or multi-frequency patterns, different degrees in relative phase of
coordinative complexity and movement amplitude, direction etc. all
contribute to the coalition of constraints but are not main focus of this
review therefore will not be reviewed in details.

To further conceptualize the coalition of constraints, two-single-
joint, bilateral or unilateral or within-limb, motions have been
investigated thoroughly in the past decades. The information-processing
and the dynamic-pattern framework have been discovered based on
similar designs [18]. Under the information-processing framework,
two-single-joint motions are considered as a special case of dual task
that is interfered with limited neural resources. Many publications
using bilateral two-single-joint paradigm show that the bimanual
coordination network is a dynamic entity that changes as a function of
task complexity (spatiotemporal interlimb relationships), difficulty level
(e.g. performance speed), and experience (e.g. transferring unfamiliar
coordination to known activities).

Freehand bimanual multijoints coordination demonstrated by
artists and athletes in dancing, gymnastics and Martial arts etc. reflect
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genuine principles and characteristics of human movements. This drives
us to be the first to explore the principles behind the challenging but
exciting bimanual multijoints coordination movements [15-17]. The
scientific motivation to explore bimanual multijoints coordination in
freehand came from a question: neuromuscular constraints governs
bimanual single joint coordination while directional constraints brings
in stable patterns within a limb without homologous muscles, then
what will happen if we perform bimanual coordination with two joints
within each upper arm? Would the two domains of constraints be
simply summed up or a new coalition of constraints would emerge to
master this more challenging task? To tackle the coalition of constraints
in human bimanual multijoints coordination, my colleagues and I
designed a series studies to systematically research bimanual motions
including all 6 major joints of the upper-limbs, namely bilateral wrist,
elbow and shoulder joints. Our objective was to discover what will
happen when homologous muscles controlled by inter-hemispheric
interactions encountered to the very segments directed by intra-
hemispheric intervention? We applied in-phase and anti-phase motions
to bimanual joints while iso-directional and noniso-directional patterns
to joints within an arm. To restrict task complexity in a manageable
range, we employed a 4 bilateral upper limb joints x 3 combinations
design. Our findings not only confirmed that fundamental principles
previously found in bimanual two joints coordination preserved in
bimanual multijoints coordination but also discovered a hierarchical
control mechanism of these fundamental principles. The most stable
pattern in bimanual multijoints coordination, ININ-ISOISO, is a
summation of both neuromuscular and directional constraints.
Between bilateral limbs, neuromuscular constraints cooperating with
mirror-symmetry (egocentric) powerfully master bimanual multijoints
coordination system. Within each limb, directional constraints working
with synergistic muscle co-activation result in another stable pattern,
ANAN-ISOSIO [15-17]. This finding also fits the principle of directional
compatibility in extrinsic space (underlying translational symmetry,
allocentric constraint). In this hierarchical control structure of control
constraints that interlimb coordination constraints played a more
prominent role than that governing intralimb coordination. The relative
weight of all constraints varies by the modulation of task demands, for
example, cycling frequency manipulation, and other important factors,
such as adjacent joint interaction within a limb, limb dominancy etc
[15]. Ultimately, it is the gestalt of the whole hierarchy that constitutes
such a beauty of complexity in human limb movement.

The advantage of such experimental designs is that all subtasks/
subcomponents have been validated by other researches under various
conditions [16,17]. Non-dominant limbs can easily perform default
bimanual and unimanual patterns. Such a combination in task design
serves as a solid foundation of the freehand bimanual multijoints
coordination studies. The three studies open a new and unique window
into the nature of interlimb and intralimb coordination constraints
during complex bimanual multijoints coordinative performance. Our
endeavors are to push bimanual coordination research systematically
towards its limits with a well-controlled balance between the capability
of data mining and data analysis, and actual performance ability of
young volunteers recruited in these studies [15-17].

Functional brain network in bimanual coordination: Bimanual
whole-hand-fist movement results in differential facilitation and
inhibition of neural activity in motor areas within both hemispheres
[22]. The visually paced bimanual movements increase connectivity
not only related to the supplementary motor area (SMA) but also to
interhemispheric primary motor cortex (M1) to M1 and premotor cortex
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(PMC) connections. SMA acts to promote or suppress M1 [22]. Many
other imaging studies using bilateral two-single-joints finger [23-31] or
forearm movements [31-33] show that bimanual coordination evokes
similar levels activation in sensorimotor network as unilateral motion
tasks. Increased recruitment of neural resources in a parieto-frontal
and subcortical network have been found specifically during bimanual
tasks [30,32,34]. These bimanual coordination specific networks show
contextual oriented dynamic feature depending on individual expertise
level, age, and pathology as well as environmental factors, such as task
difficulty and complexity. And its evoked activations may expand into
frontal, parieto-occipital, temporal areas and the insular cortex. On
the one hand, increasing task difficulty by elevating cycling frequency
profoundly results in enhanced harmonic activation in premotor,
SMA and M1 of motor area [35,36]. On the other hand, activations in
parieto-temporal regions are required besides sensorimotor network
in order to handle increased task complexity during performing non-
preferred/non-familiar coordination patterns [35]. The execution of
anti-phase as compared to in-phase coordination patterns is associated
with increased activity of the cingulate motor area (CMA) and its
effective connectivity with the cerebellum [33]. Aging results in higher
recruitment of functional activity in action planning as well as the task-
related brain network in bimanual coordination execution [36,37].
Experience and expertise show lower degrees of neural recruitment
in bimanual coordination tasks than novices [25,38]. Bimanual
coordinative training and experience result in complex dynamic
network changes by elevating plasticity within- as well as between-
hemisphere interactions [39,40], thus strengthens interaction among
different brain regions [41]. Bimanual coordination tasks such as hand-
arm bimanual intensive therapy (HABIT) [42,43] has shown motor
improvements for the rehabilitation of children with hemiparesis (CH).
However, measurable neuroplasticity change following HABIT in CH
that shifts to a more unilateral brain activation pattern is consistently
associated with motor improvements [44].

Structural brain network in bimanual coordination: Diffusion
weighted imaging studies reveal that better performance on bimanual
coordinative tasks is usually consequences of higher structural
connectivity in various sections of corpus callosum (CC), where
connections of bilateral sensorimotor, parietal and occipital areas
intersect. The initial skill learning ability of bimanual coordinative
patterns can be predicted by the white matter organization of the
anterior CC, which directly connects to areas involved in motor
learning in the prefrontal cortex [45]. The recruitment of anterior and
posterior CC are associated with highly skillful bimanual task training,
for example comparing pianists with matched controls [10, 46-52].
Interactions between CC and bimanual coordination have been
studied by mapping bimanual functions on distinct CC subregions
considering factors, such as age, pathology and training [53]. White
matter integrity in the middle CC is associated with bimanual and
unimanual skills in CH following HABIT [54].

Limits and future opportunities: Up to now, it has not been
possible to study freehand bimanual multijoints coordination
simultaneously involving more than 4 joints of the upper limbs within
a kinematic study. To my knowledge so far, no imaging study has
attempted to employ this exciting but challenging paradigm to bring
more complexity to this already complex brain network in imaging
field. Technical and practical difficulties are obviously the biggest
obstacles to make further progress. Nevertheless, obstacle is the way.
I would expect that a breakthrough might be made in the near future
to employ the freehand bimanual multijoints coordination to directly
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investigate inter- as well as intra-hemispheric brain connectivity at
different levels within brain networks.

Highly contextual task complexity of this freehand bimanual
multijoints coordination paradigm provides a rich resource of
mulitjoints movement patterns covering various degrees of difficulty
with possibility to adjust task complexity. These patterns are well-
balanced in design concerning lateralization, limb dominance and
so on factors therefore can be easily/directly used for individualized
training and rehabilitation treatment in elderlies or movement disorder
patients. In stroke rehabilitation literature, systematically investigating
bimanual coordination post-stroke and applying appropriate bimanual
coordination training have been proposed [54]. More researches to
characterize and quantify bimanual coordination for laboratory-based
and real-world tasks as well as knowledge to implement scientific
achievement to the realistic treatments are urged to be prioritized
among researchers in motor control, cognitive neuroscience and
rehabilitation science. The author would like to call for introducing
test batteries of bimanual function as a general practice to assess
the integrity of movement control and motor learning in movement
disorders as valuable measure and rehabilitation programs supported
by bimanual coordination research on various diseases as promising
applications in healthcare big data projects.

Conclusion

Bimanual multijoints coordination researches delineate certain
similarity to functional and structural configurations of the human
brain. Specifically, interlimb/bilateral/bimanual coordination reflects
inter-hemispheric interactions while intralimb/within-limb/ipsilateral
coordination mirrors intra-hemispheric interactions of human
brain functions and structures. Well understanding the hierarchy
of constraints in motor control as well as functional and structural
network interactions in neuroscience specified by bimanual mulitjoints
coordination will help a broad range research on daily life activities
including object interactive tasks, ergonomics, training as well as
rehabilitation and treatment for patients with movement disorders, etc.
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