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Abstract
Walking upright freed the hands for carrying and manipulating tools. This complex bimanual coordinative ability may have been an essential step to lead our 
ancestors' brains to grow. The current review aims to tackle the state-of-the-art control mechanisms in kinematics and motor control perspectives during performing 
bimanual multijoints coordinative movements. The endeavor is to delineate possible principles from task goals, manipulations and modules, related brain activation 
and connectivity perspectives, and benefits and limits of considered modules to apply these principles to improve the life quality of people with movement disorder 
diseases and people who want to be healthier.

About six million years ago, Sahelanthropus may have walked 
on two legs. Becoming bipedal, walking upright freed the hands for 
carrying and manipulating tools. This complex bimanual coordinative 
ability may have been an essential step to lead our ancestors' brains 
to grow. In daily life, the ability to master objects such as weapons, 
tools, stationaries etc. by strong and agile upper limbs is revolutionary 
throughout the human evolution. 

The hierarchy of constraints in bimanual coordination: Bimanual 
multijoints coordinative activities have been studied at many levels of 
the cognitive and motor systems. Three paradigms, including drawing 
tasks with direct objectives using pens or styluses in both hands, e.g., 
circle [1-6], star-line, etc. [7-12], bimanual tasks with abstract temporal 
and spatial objectives employing manipulanda [13] and joy sticks [14], 
and freehand bimanual multijoints coordinative tasks have been utilized 
to study the representation of bimanual actions [15-17]. As a unique 
evolutional landmark, writing and drawing are mostly a unilateral task. 
Therefore, intensive training of non-dominant hand to handle a pen 
or stylus is often needed to minimize the unequal motor capability 
as compared to the skillful dominant hand. The other two paradigms 
well compromise the unequal skillfulness of both hands by applying 
unified devices or focusing on pure joint/limb movements. In the 
past few decades, research findings in bimanual coordination suggest 
a coalition of constraints in bimanual coordination. The identified 
constraints cover from cognitive or perceptual to neuromuscular level, 
which are centered by network-level perception-action interactions 
of the CNS [18]. Among these bimanual coordination constraints, 
the neuromuscular constraint is defined as the relative timing of 
homologous muscle activation. Relative phase (Φ), subtraction of the 
phase angle of each limb at each measurable time point during cyclic 
movement, serves as a measure of two-limb-coordination. In-phase 
motion (IN, Φ = 0°) refers to moving the fingers, wrists, or forearms 
inwards and outwards from the body midline simultaneously activate 
homologous muscle groups. Anti-phase motion (AN, Φ = 180°) means 
that homologous muscle groups are activated in alternation. In-phase 
is more stable than anti-phase in bimanual coordination. The higher 
the movement speed goes, the more differential stability between both 
coordination modes becomes [19,20]. These coordination modes 
are generic as they are evident across different movement effectors. 
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Directional constraint results in stable patterns when two-single-joints 
move in the same direction without muscle homology, for example, 
anti-phase motion in bimanual coordination. Another example is 
that iso-directional movement of elbow and wrist within an arm 
(ISO, simultaneous flexion and extension of elbow and wrist) is more 
stable than noniso-directional movement (NISO, elbow flexion with 
simultaneous wrist extension or vice versa). Our work in 2004 revealed 
that neuromuscular constraint is dominant over perceptual constraints 
by directly comparing two constraints within a study. In that study, 
healthy young volunteers performed well controlled bimanual wrist 
coordinative movement with a set of conditions composed by palm-
up or palm-down combinations [21]. Other constraints identified by 
iso- or multi-frequency patterns, different degrees in relative phase of 
coordinative complexity and movement amplitude, direction etc. all 
contribute to the coalition of constraints but are not main focus of this 
review therefore will not be reviewed in details.

To further conceptualize the coalition of constraints, two-single-
joint, bilateral or unilateral or within-limb, motions have been 
investigated thoroughly in the past decades. The information-processing 
and the dynamic-pattern framework have been discovered based on 
similar designs [18]. Under the information-processing framework, 
two-single-joint motions are considered as a special case of dual task 
that is interfered with limited neural resources. Many publications 
using bilateral two-single-joint paradigm show that the bimanual 
coordination network is a dynamic entity that changes as a function of 
task complexity (spatiotemporal interlimb relationships), difficulty level 
(e.g. performance speed), and experience (e.g. transferring unfamiliar 
coordination to known activities). 

Freehand bimanual multijoints coordination demonstrated by 
artists and athletes in dancing, gymnastics and Martial arts etc. reflect 
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(PMC) connections. SMA acts to promote or suppress M1 [22]. Many 
other imaging studies using bilateral two-single-joints finger [23-31] or 
forearm movements [31-33] show that bimanual coordination evokes 
similar levels activation in sensorimotor network as unilateral motion 
tasks. Increased recruitment of neural resources in a parieto-frontal 
and subcortical network have been found specifically during bimanual 
tasks [30,32,34]. These bimanual coordination specific networks show 
contextual oriented dynamic feature depending on individual expertise 
level, age, and pathology as well as environmental factors, such as task 
difficulty and complexity. And its evoked activations may expand into 
frontal, parieto-occipital, temporal areas and the insular cortex. On 
the one hand, increasing task difficulty by elevating cycling frequency 
profoundly results in enhanced harmonic activation in premotor, 
SMA and M1 of motor area [35,36]. On the other hand, activations in 
parieto-temporal regions are required besides sensorimotor network 
in order to handle increased task complexity during performing non-
preferred/non-familiar coordination patterns [35]. The execution of 
anti-phase as compared to in-phase coordination patterns is associated 
with increased activity of the cingulate motor area (CMA) and its 
effective connectivity with the cerebellum [33]. Aging results in higher 
recruitment of functional activity in action planning as well as the task-
related brain network in bimanual coordination execution [36,37]. 
Experience and expertise show lower degrees of neural recruitment 
in bimanual coordination tasks than novices [25,38]. Bimanual 
coordinative training and experience result in complex dynamic 
network changes by elevating plasticity within- as well as between-
hemisphere interactions [39,40], thus strengthens interaction among 
different brain regions [41]. Bimanual coordination tasks such as hand-
arm bimanual intensive therapy (HABIT) [42,43] has shown motor 
improvements for the rehabilitation of children with hemiparesis (CH). 
However, measurable neuroplasticity change following HABIT in CH 
that shifts to a more unilateral brain activation pattern is consistently 
associated with motor improvements [44]. 

Structural brain network in bimanual coordination: Diffusion 
weighted imaging studies reveal that better performance on bimanual 
coordinative tasks is usually consequences of higher structural 
connectivity in various sections of corpus callosum (CC), where 
connections of bilateral sensorimotor, parietal and occipital areas 
intersect. The initial skill learning ability of bimanual coordinative 
patterns can be predicted by the white matter organization of the 
anterior CC, which directly connects to areas involved in motor 
learning in the prefrontal cortex [45]. The recruitment of anterior and 
posterior CC are associated with highly skillful bimanual task training, 
for example comparing pianists with matched controls [10, 46-52]. 
Interactions between CC and bimanual coordination have been 
studied by mapping bimanual functions on distinct CC subregions 
considering factors, such as age, pathology and training [53]. White 
matter integrity in the middle CC is associated with bimanual and 
unimanual skills in CH following HABIT [54].

Limits and future opportunities: Up to now, it has not been 
possible to study freehand bimanual multijoints coordination 
simultaneously involving more than 4 joints of the upper limbs within 
a kinematic study. To my knowledge so far, no imaging study has 
attempted to employ this exciting but challenging paradigm to bring 
more complexity to this already complex brain network in imaging 
field. Technical and practical difficulties are obviously the biggest 
obstacles to make further progress. Nevertheless, obstacle is the way. 
I would expect that a breakthrough might be made in the near future 
to employ the freehand bimanual multijoints coordination to directly 

genuine principles and characteristics of human movements. This drives 
us to be the first to explore the principles behind the challenging but 
exciting bimanual multijoints coordination movements [15-17]. The 
scientific motivation to explore bimanual multijoints coordination in 
freehand came from a question: neuromuscular constraints governs 
bimanual single joint coordination while directional constraints brings 
in stable patterns within a limb without homologous muscles, then 
what will happen if we perform bimanual coordination with two joints 
within each upper arm? Would the two domains of constraints be 
simply summed up or a new coalition of constraints would emerge to 
master this more challenging task? To tackle the coalition of constraints 
in human bimanual multijoints coordination, my colleagues and I 
designed a series studies to systematically research bimanual motions 
including all 6 major joints of the upper-limbs, namely bilateral wrist, 
elbow and shoulder joints. Our objective was to discover what will 
happen when homologous muscles controlled by inter-hemispheric 
interactions encountered to the very segments directed by intra-
hemispheric intervention? We applied in-phase and anti-phase motions 
to bimanual joints while iso-directional and noniso-directional patterns 
to joints within an arm. To restrict task complexity in a manageable 
range, we employed a 4 bilateral upper limb joints x 3 combinations 
design. Our findings not only confirmed that fundamental principles 
previously found in bimanual two joints coordination preserved in 
bimanual multijoints coordination but also discovered a hierarchical 
control mechanism of these fundamental principles. The most stable 
pattern in bimanual multijoints coordination, ININ-ISOISO, is a 
summation of both neuromuscular and directional constraints. 
Between bilateral limbs, neuromuscular constraints cooperating with 
mirror-symmetry (egocentric) powerfully master bimanual multijoints 
coordination system. Within each limb, directional constraints working 
with synergistic muscle co-activation result in another stable pattern, 
ANAN-ISOSIO [15-17]. This finding also fits the principle of directional 
compatibility in extrinsic space (underlying translational symmetry, 
allocentric constraint). In this hierarchical control structure of control 
constraints that interlimb coordination constraints played a more 
prominent role than that governing intralimb coordination. The relative 
weight of all constraints varies by the modulation of task demands, for 
example, cycling frequency manipulation, and other important factors, 
such as adjacent joint interaction within a limb, limb dominancy etc 
[15]. Ultimately, it is the gestalt of the whole hierarchy that constitutes 
such a beauty of complexity in human limb movement. 

The advantage of such experimental designs is that all subtasks/
subcomponents have been validated by other researches under various 
conditions [16,17]. Non-dominant limbs can easily perform default 
bimanual and unimanual patterns. Such a combination in task design 
serves as a solid foundation of the freehand bimanual multijoints 
coordination studies. The three studies open a new and unique window 
into the nature of interlimb and intralimb coordination constraints 
during complex bimanual multijoints coordinative performance. Our 
endeavors are to push bimanual coordination research systematically 
towards its limits with a well-controlled balance between the capability 
of data mining and data analysis, and actual performance ability of 
young volunteers recruited in these studies [15-17]. 

Functional brain network in bimanual coordination: Bimanual 
whole-hand-fist movement results in differential facilitation and 
inhibition of neural activity in motor areas within both hemispheres 
[22]. The visually paced bimanual movements increase connectivity 
not only related to the supplementary motor area (SMA) but also to 
interhemispheric primary motor cortex (M1) to M1 and premotor cortex 
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investigate inter- as well as intra-hemispheric brain connectivity at 
different levels within brain networks. 

Highly contextual task complexity of this freehand bimanual 
multijoints coordination paradigm provides a rich resource of 
mulitjoints movement patterns covering various degrees of difficulty 
with possibility to adjust task complexity. These patterns are well-
balanced in design concerning lateralization, limb dominance and 
so on factors therefore can be easily/directly used for individualized 
training and rehabilitation treatment in elderlies or movement disorder 
patients. In stroke rehabilitation literature, systematically investigating 
bimanual coordination post-stroke and applying appropriate bimanual 
coordination training have been proposed [54]. More researches to 
characterize and quantify bimanual coordination for laboratory-based 
and real-world tasks as well as knowledge to implement scientific 
achievement to the realistic treatments are urged to be prioritized 
among researchers in motor control, cognitive neuroscience and 
rehabilitation science. The author would like to call for introducing 
test batteries of bimanual function as a general practice to assess 
the integrity of movement control and motor learning in movement 
disorders as valuable measure and rehabilitation programs supported 
by bimanual coordination research on various diseases as promising 
applications in healthcare big data projects.

Conclusion
Bimanual multijoints coordination researches delineate certain 

similarity to functional and structural configurations of the human 
brain. Specifically, interlimb/bilateral/bimanual coordination reflects 
inter-hemispheric interactions while intralimb/within-limb/ipsilateral 
coordination mirrors intra-hemispheric interactions of human 
brain functions and structures. Well understanding the hierarchy 
of constraints in motor control as well as functional and structural 
network interactions in neuroscience specified by bimanual mulitjoints 
coordination will help a broad range research on daily life activities 
including object interactive tasks, ergonomics, training as well as 
rehabilitation and treatment for patients with movement disorders, etc.
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