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Extinction of fear memory during development: lesson for 
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Abstract
A large number of behavioral studies have shown that extinction does not eliminate the classical fear memory in the adult. The majority of studies have focused on 
the mechanisms of extinction-induced inhibition within the fear circuits. However, recent studies have uncovered mechanisms that destabilize and perhaps even erase 
fear memories, opening the possibility of erasure extinction therapy. In contrast to the adult, extinction of fear memories appears to be erasure in nature in infant 
rodents. Here, we review the recent literature on fear extinction during development and identify the critical issues to be resolved. Understanding the mechanism of 
erase-type extinction in the young may enable more effective therapy to treat PTSD and/or anxiety disorders by preventing the return of fear permanently.
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Introduction 
Context-dependent modulation of learned skills or information is 

vital to the appropriate functioning of an organism. This modification 
allows an organism to change or update the stored information 
according to alterations in their values about and associations to the 
external world [1]. Such modifications are also important for treating 
psychiatric diseases, such as PTSD and anxiety disorders, by which 
exposure therapy has been effective in reducing the exaggerated 
fear responses to trauma-related cues or terrible memory in these 
patients [1-5]. 

In classical auditory fear conditioning, an auditory cue, the so-
called conditioned stimulus (CS), is associated with an aversive shock, 
the unconditioned stimulus (US). When CS is presented in the absence 
of US, extinction occurs which is exhibited as reduction and eventual 
cessation of conditioned responses (freezing or startle in this case). 
Pavlovian fear conditioning in animals has been studied extensively 
to simulate various clinical features of anxiety disorders, including 
relapse of post-traumatic stress disorder (PTSD). It is generally viewed 
that PTSD is associated with elevated fear-memory acquisition, poor 
contextual gating of fear, and impaired learning and retention of 
fear extinction [6-11]. Extinction provides the biological basis of 
exposure therapy, in which patients are exposed to feared stimuli in 
a systematic, gradual manner with the aim to reduce fear responses to 
these stimuli.  Therefore, understanding the formation and extinction 
of fear memory has a direct relevance to the treatment of PTSD and 
other anxiety disorders. Developmental theories as well as clinical 
and empirical evidence have increasingly shown very young children 
at critical developmental ages are more vulnerable to trauma than 
older children and adults [7-9]. They are more capable to extinguish 
previously learned associations which lead to more effective regulation 
of their emotions [10]. The prevalence of anxiety disorders is known 
to increase during late childhood and early adolescence [11]. While 
extensive research describes the developmental patterns of human 
fear in response to intrinsically threatening events, far less research 
examines developmental aspects of learned fears.

In this review, we outline the mechanisms implicated in fear 
extinction process, highlight main findings and unsolved questions 
about extinction of fear memory during development, and discuss 
nature underlying fear extinction of juvenile and the potential 
therapeutic application.

Nature and mechanisms of fear extinction in the adult
With extinction, there are two possible fates of the formed fear 

memory: erasure or suppression. Erasure is defined as reversing the 
established changes during fear memory formation and hence removal 
of fear memory, while with suppression fear memory is left intact but 
its expression if suppressed via formation of a new inhibitory memory 
[12]. If a fear memory is excessive to cause uncontrollable fear and 
hence hinders with normal functions of an organism/individual, 
it is desirable to removal it entirely via erasure to prevent its future 
expression. However, for the adequately expressed fear which improves 
the chance of survival, it is of more advantage to suppress it under the 
conditions where it is irrelevant but to allow its expression under the 
appropriate context. This renewal of fear avoids the relearning process 
(which is required for fear to reemerge if erasure occurs) and thus 
allows rapid expression of fear to facilitate the appropriate responses. 

Works carried out on adult animals have identified key brain 
structures involved in fear memory extinction and underlying 
biological mechanisms. Considerable evidence has shown that 
extinction does not reverse the original learning but instead is an active 
learning process. That extinguished fear memory can reappear under 
three distinct conditions (renewal, reinstatement and spontaneous 
recovery) [13] is generally regarded as strong evidence that extinction 
involves context-dependent new learning [14,15]. Fear extinction and 
retrieval requires a complex neural circuit, including hippocampus 
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(HPC), medial prefrontal cortex (mPFC) and amygdala [16-19]. It is 
generally agreed that hippocampus takes contextual information for 
both contextual fear conditioning and the contextual gating of cued 
fear memory retrieval [20-22]. The medial prefrontal cortex (mPFC) is 
a critically involved in fear extinction [23] by regulating and integrating 
external information to guide the function of downstream brain regions 
[24]. The prelimbic (PL) region of mPFC receives direct inputs from 
the basolateral amygdala (BLA) and the ventral hippocampus, and it 
plays important role in the generation and expression of conditioned 
fear responses. The infralimbic (IL) of mPFC is associated with the 
suppression of conditioned fear responses via projections densely 
innervating clusters of GABAergic cells of the amygdala that are 
interspersed between the borders of  basolateral amygdala (BLA) and 
CeA (referred to as intercalated cells (ITC) during extinction learning 
and extinction memory retrieval [25]. 

Basal and lateral amygdala is required for the acquisition, 
storage and expression of conditioned fear memory. Long-term 
potentiation (LTP) in the lateral nucleus of the amygdala is proposed 
as the underlying synaptic mechanism of associative fear memory [26], 
although there are unresolved issues and challenges to the amygdala 
LTP hypothesis of fear conditioning [27]. Amygdala LTP requires 
activation of N-methyl-D-aspartate (NMDA) subtype of the glutamate 
receptor, and extinction training leads to depotentiation of LTP by 
inducing AMPA receptor endocytosis [28]. Thus, fear conditioning 
and extinction are accompanied by an increase and decrease in synaptic 
activity in amygdale, respectively [29]. Density of dendritic spines was 
significantly increased in the fear conditioned group compared to the 
fear extinction group in BLA [30]. However, fear conditioning induced 
spine elimination while new formation occurs after extinction occur 
on the same dendritic branches in dorsal medial region of the frontal 
association cortex (FrA) [31] The fact that opposite structural changes 
occur after fear conditioning is interesting, since it suggests the exact 
direction of changes may differ pending on the regions involved.

Fear extinction during development 
A number of studies suggested that fear extinction is erasure in 

nature in postnatal animals (such as pre-weaning age of postnatal 17 
in rodents). It is unclear whether this erased memory in infants reflects 
a failure of storage or a failure of retrieval. The basic observations 
are of the following: Rats received extinction training at P17 did not 
exhibit a return of fear when tested in a context different from the 
extinction training (i.e., renewal) or following a pre-test stressor (i.e., 
reinstatement). In contrast, rats extinguished at P24 exhibited a return 
of fear in both situations (Kim and Richardson, 2010b). Our group has 
observed elevated activity in the HPC during extinction retrieval in the 
juvenile mice, which suggested that HPC is likely to be functioning at 
this age [32]. This context-independent in cued fear memory extinction 
retrieval in the juvenile is consistent with previous findings [16,33-
35]. We also found that the output portion of the circuitry mediating 
extinction retrieval (IL to BLA) to be functional while the inputs 
portion (HPC to PFC) is not. This lack of effective inputs may result in 
context-independent extinction retrieval. On the other hand, NMDA 
receptor antagonist MK-801 impairs extinction retention if extinction 
training was given at P24 but not at P17 [28]. In addition, Kim and 
Richardson have shown that neither NMDA receptors nor GABA 
receptors are necessary for extinction of learned fear in the P17 rat [36]. 
Thus, extinction in postnatal animals appears to follow mechanistically 
distinct mechanisms than the adult in that extinction appears to erase 
the formed fear memory. 

Why does extinction in juvenile animals appear to be erasure 
while most studies indicate suppression of fear memory in the adult? 
The most likely explanation is that HPC and/or mPFC do not carry 
their required functions in the juvenile due to either themselves are 
immature or their connections with BLA (where the fear memory is 
located) is not strong enough. For the former, one possibility is that the 
immature HPC cannot encode the contexts or discriminate contexts 
to enable the context-specific suppression of fear memory (as what 
occurs in the adult). There are, however, three evidences against this 
possibility: (1) contextual fear memory is established around P14 in 
mice [33]. (2) Context pre-exposure study suggested that HPC can 
encode contexts, but could not make use of contextual information 
in fear memory formation in the young mice [37]. (3) Our results 
indicated that lack of activation in brain regions known to participate 
in fear expression (e.g., PL, BLA) using c-Fos staining after extinction 
retrieval in P17 mice. 

For the latter possibility that the connections between BLA and 
HPC and/or mPFC are not strong enough to mediate this top-down 
control, the evidence is as follows: HPC encoding context is observed 
at P17. Recent studies [37] and our recent results provide compelling 
evidence that the hippocampus is functional for contextual learning as 
early as P17. However, its connection to the amygdale or other relevant 
brain structures may not yet be fully developed. This lack of effective 
inputs may result in context-independent extinction retrieval[38,39]. We 
suggest the most likely cause of the context-independent extinction 
retrieval is the immatureness of HPC-PFC-Amygdala connections. Our 
analysis raised the possibility that it is the immatureness of connections 
from HPC to PFC, rather than connections from PFC to BLA, is the 
key step in preventing context-dependent extinction retrieval. This also 
has been shown in fear conditioning, where pre-weaned rats (typically 
younger than P23), fail to exhibit contextually conditioned freezing 24 
h after conditioning, despite their ability to freeze to an explicit cue 
[40]. One interesting and intriguing possibility raised by Richardson 
and colleagues is that by being isolated from other key brain regions 
involved in fear memory, extinction in the BLA-dominant circuitry is 
erasure in nature (removal rather than suppression of memory). They 
proposed that extinction in P24 involves hippocampal modulation of 
mPFC, which in turn controls BLA projections to the CeA [36].

Important unresolved questions 
1. The stability of fear memory in the juvenile: there is clear evidence 

that fear memory in the young is not stable and may be quickly reduced 
after retrieval [41]. In theory, an unstable memory will be easier to be 
extinguished or even erased. But the biological basis underlying this 
fragile fear memory is unclear [42]. It could be possible, since there 
is not much conductivity between BLA and HPC or BLA and PFC in 
the young, the fear memory formed under this condition is sensitive 
to turn-over. It follows that connections to different and numerous 
brain regions enable the formed memory resistant to erasure, than the 
memory with only one representation in the BLA. Although it is widely 
believed that fear memory is stored in the BLA, the stored memory 
appears to have wide connections to other regions in the brain. It will 
be important to test this possibility, especially in the context that the 
potential benefits of segregating these connections to isolate the fear 
memory in order to facilitate its extinction or erasure. 

2. Is the extinction process in the young/juvenile mechanistically 
distinct from that in the adult? As we have discussed, brain regions 
being activated during extinction is quite different between juvenile and 
the adult since there are much less number of regions involved in the 
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juvenile [36]. This observation is consistent with the finding that in the 
young BLA is not much connected with other brain regions including 
HPC and PFC [28]. Then does the difference in brain regions indicate 
distinct underlying mechanisms? For example, it has been reported 
that fear extinction is associated with the reversal of synaptic plasticity 
and alterations in dendritic spines in the adult [30], but whether similar 
changes occur in the young has not been tested. If extinction in the 
young is erasure in nature, then reversal of synaptic changes associated 
with fear memory formation is expected, likely in the BLA. If this is 
the case, then one question to be addressed is whether similar changes 
occur in the BLA in both young and adult, but distinct changes occur in 
in the adult at many more brain regions than in the young.   

3. Can the erasure type extinction be achieved in the adult? Since 
extinction appears to occur as BLA is isolated from the rest of the 
brain, the question can be asked is whether silencing connections with 
HPC and PFC or just one of them is sufficient to push fear memory to 
be erased. There are some suggestive of this possibility: (1) Fanselow 
and colleagues found that deficit of the IL, animals fail to distinguish 
between a dangerous, fear-conditioned context and a novel context 
suggests that mPFC is integral to the ability to determine whether fear 
should be expressed or inhibited in a particular environment [43]. In 
vivo recordings or imaging of IL activity in rat or vmPFC activity in 
human have shown increased CS-related activity during fear extinction 
memory recall (2) While dHPC was damage, the brain can compensate 
it by alternative circuits [44-46], restoring some of the essential 
elements of context-related learning and memory. In particular, pre-
training lesions can overcome a deficit caused by post-training lesions 
of the DH in fear renewal [37,47,48] (3) Previous findings have found 
that in the absence of the BLA, animals are able to form compensatory 
fear memories, provided they are given adequate training [49,50]. 
These findings support the idea that the fear system is comprised of 
interconnected, highly parallel circuits that provide compensatory 
plasticity in the event that one structure is compromised [51].

Summary and conclusions
There is clear evidence that fear memory in the young is not stable 

and may be quickly reduced after retrieval. But the biological basis 
underlying this likely erased fear memory is unclear. The observation 
that BLA is not much connected with other brain regions including 
HPC and PFC in the young may be the main reason. If this speculation 
is confirmed, the next question is whether something similar can be 
achieved or mimicked in the adult to enable erasure of unwanted fear 
memories and hence makes therapy more effective and persistent.
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