Attenuation of high sucrose diet–induced insulin resistance in ABC transporter deficient white mutant of Drosophila melanogaster

Valeriya Navrotskaya¹, Gregory Oxenkrug²*, Lyudmila Vorobyova¹ and Paul Summergrad²

¹Department of Genetics and Cytology, V.N. Karazin Kharkiv National University, Ukraine
²Psychiatry and Inflammation Program, Department of Psychiatry, Tufts University/Tufts Medical Center, USA

Abstract
Exposure to high sugar diet (HSD) is an experimental model of insulin resistance (IR) and type 2 diabetes (T2D) in mammals and insects. In Drosophila, HSD-induced IR delays emergence of pupae from larva and eclosion of imago from pupae. Understanding of mechanisms of IR/T2D is essential for refining T2D prevention and treatment strategies. Dysregulation of tryptophan (Trp)–kynurenine (Kyn) pathway was suggested as one of the mechanisms of IR/T2D development. Rate-limiting enzyme of Trp–Kyn pathway in Drosophila is Trp 2,3-dioxygenase (TDO), an evolutionary conserved ortholog of human TDO. We previously reported attenuation of HSD-induced IR in vermilion mutants with inactive TDO. Conversion of Trp to Kyn is regulated not only by TDO activity but by intracellular Trp transport via ATP-binding cassette (ABC) transporter encoded by white gene in Drosophila. In order to evaluate the possible impact of deficient intracellular Trp transport on the inducement of IR by HSD, we compared the effect of HSD on pre-imago development in wild type flies, Canton-Special (C-S), and C-S flies containing white gene, white (C-S). Presence of white gene attenuated (by 50%) HSD-induced delay of pupae emergence from larva and female and male imago eclosion from pupae. Present study together with our earlier report reveals that both decreased TDO activity (due to vermilion gene mutation) or deficient Trp transport into cell without affecting TDO levels (due to white gene mutation) attenuate HSD-induced development of IR in Drosophila model of T2D. Our data provide further support for hypothesis that dysregulation of Trp–Kyn pathway is one of the pathophysiological mechanisms and potential target for early diagnosis, prevention and treatment of IR/T2D.

Introduction
Diabetes mellitus is a public health problem, which affects a millions worldwide. Most diabetes cases are classified as type 2 diabetes mellitus (T2D), which is highly associated with obesity [1]. Impaired glucose tolerance (pre-diabetes) is a high-risk factor for T2D [2]. Insulin resistance (IR) is associated with prediabetes before T2D could be diagnosed. Further elucidation of IR mechanisms is needed for prevention and treatment of T2D. It was suggested that dysregulation of kynurenine (Kyn) pathway of tryptophan (Trp) metabolism is one of the mechanisms of development of IR/T2D [3-8]. We found IR correlation with activity of Trp–Kyn pathway in Hepatitis C virus (HCV) patients [9], and elevation of plasma concentrations of Kyn downstream metabolites in T2D patients [10]. Experimental model of T2D was established in Drosophila melanogaster [11]. There are four distinct stages in the life of flies: egg, larva, pupa, and imago (adult). High sugar diet (HSD) induces IR in larva and T2D in imago [12]. IR delays emergence of pupae from larva and imago eclosion from pupae [13]. In Drosophila, tryptophan 2,3-dioxygenase (TDO), enzyme, catalyzing formation of Kyn (via N-formyl-kynurenine) from Trp, is encoded by vermilion gene [14]. We found attenuation of HSD-induced development of IR in vermilion mutants with inactive TDO [15]. TDO is substrate-activated intracellular enzyme. Therefore, conversion of Trp to Kyn is regulated not only by TDO activity but by Trp transport into cells as well [16]. Import of Trp into cell is mediated by ATP-binding cassette (ABC) transporters encoded by white gene in Drosophila. White mutations do not alter levels of TDO, but interfere with the ability of cells to take up Trp [17]. Therefore, mutations of both TDO (vermilion) and ABC transporter (white) genes have a similar effect, i.e., decreased formation of Kyn from Trp. In order to evaluate the possible impact of impairment of intracellular Trp transport on the inducement of IR by HSD, we compared the effect of HSD on pre-imago development in wild type flies, Canton-Special (C-S), and C-S flies containing white gene, white (C-S).

Materials and methods
Flies from C-S the collection of V.N. Karazin Kharkiv National University were used in the study. Wild type Drosophila melanogaster and white (C-S) mutants flies were maintained at 23°C in a 12:12 light: dark period on a standard nutrition medium consisting of sugar, yeast, agar and semolina. Experimental eggs were obtained from parents with synchronized egg laying. Before eggs laying sucrose (0.67M) was added to nutrition medium. Emerging time was taken as the period from the time of synchronized egg laying to the time of larvae emergence into pupae as described elsewhere [15]. Appearance of female and male

Correspondence to: Gregory F. Oxenkrug, Tufts Medical Center, 800 Washington St, #1007, Boston, MA, 02111, USA, E-mail: goxenkrug@tuftsmedicalcenter.org

Key words: white mutants, ABC-transporter, drosophila, high sugar diet, insulin resistance, type 2 diabetes, kynurenine, tryptophan, obesity

Received: January 10, 2016; Accepted: February 04, 2016; Published: February 08, 2016
imago from pupae was recorded as time of eclosion. The study was carried out in November and December 2015.

Statistical analysis

Data were expressed as mean±standard deviation (hours of pupae emergence and imago eclosion). Differences between experimental groups were evaluated by Mann Whitney, two-tailed test.

Results

Pupae emergence from larva

Emergence time of C-S wild type flies maintained on standard nutrition medium was 7% shorter than emergence time of white (C-S) mutants (p<0.0001) (Table 1). HSD delayed pupae emergence from larva of wild type flies, C-S, in comparison with flies maintained on standard nutrition medium by almost 3 days (40%). In white (C-S) mutants HSD delayed pupae emergence from larvae by 1.6 days (20%) in comparison with flies maintained on standard nutrition medium. Therefore, presence of white gene attenuated HSD-induced delay of pupae emergence from larvae by 50% (Table 1).

Imago eclosion from pupae

There was no significant gender effect on imago eclosion time (Table 2). Eclosion times of both female and male C-S wild type flies maintained on standard nutrition medium were about 8% shorter than eclosion times of white (C-S) mutants (p<0.0001). HSD delayed imago eclosion in C-S flies in comparison with flies maintained on standard nutrition medium by 2.75 days (20.5%) in females and by 2.60 days (19.8%) in males. HSD delayed imago eclosion in white (C-S) mutants by 1.3 days (9%) in females and by 1 day (7%) male flies. Therefore, presence of white gene attenuated HSD-induced eclosion by 50% in comparison with wild type flies (Table 2).

Discussion

Present data indicate that HSD delays pupae emergence from larva and imago eclosion in wild type C-S flies in accordance with literature data [11-13]. We are not aware of studies of the effect of HSD on preimaginal stages (from egg through larva and pupa to imago) of ABC transporter deficient white flies. Notably, the emergence time of white (C-S) mutants maintained on standard nutrition medium was longer than emergence time of C-S wild type flies. Similar results were seen for imago eclosion time in white (C-S) and Canton-S flies. This observation may suggest that development rate of egg to adult fly is naturally delayed in mutant flies as compared to wild flies. We observed that HSD reversed this tendency in mutants in contrast to HSD-induced delay of preimaginal development in wild flies: HSD-induced delay of pre-imaginal development was two times shorter in white (C-S) mutants than in wild type C-S flies. Considering that HSD-induced delay of preimaginal development is caused by IR [11-13], our data suggest that mutation of white gene attenuates HSD-induced IR.

Attenuation of HSD-induced IR in white (C-S) flies most likely depends on deficiency of ABC transporter that mediates Trp import into cell, and, thus, decreases availability of Trp, a substrate for intracellularly located TDO [16]. Decreased availability of Trp as a substrate for TDO results in decreased Kyn formation from Trp, without affecting TDO activity [17]. TDO-regulated KYN formation from Trp begins at the end of the third larval instar in the cells of the anterior region of fat body (analog of liver and fat tissues in humans) [14]. Immediate metabolic response to HSD in Drosophila is an increase of glucose in hemolymph [12]. Hyperglycemia induces production of O2- and H2O2, and generation of mitochondrial reactive oxygen species of glucose in hemolymph [12]. Hyperglycemia induces production of O2- and H2O2, and generation of mitochondrial reactive oxygen species in rodents [18], and activates hypothalamic-pituitary-adrenal axis and, consequently, increases secretion of cortisol, a hormonal inducer of TDO, in rat model of T2D [19] and in T2D patients [20]. Notably, high glucose selectively inhibits ABC transporter G1 subtype, involved in Trp transport, in human macrophages [21]. Therefore, mutation of white gene, that prevents Trp import into cell, might confer resistance to HSD-induced IR and T2D, an aging associated disease [4]. Notably, we reported pronged life span in white mutants [22] while resistance to high glucose-induced oxidative stress was associated with longevity in rodents [18]. Considering that white mutants have deficient transport of both Trp and guanine, attenuation of HSD-induced IR might depend not only on Trp but guanine transporter deficiency as well. While such a possibility could not be ruled out based on available data, some other factors might affect functions of white mutant, the parent strain of Methuselah Drosophila [23,24]. Further studies, e.g. of the effect of ABC-transporter inhibitor, 5-methylTrp, [25] on HSD-induced IR might help to differentiate between impairment of guanine- and Trp-ABC transporters.

Table 1. Effect of high sucrose diet on time of pupae emergence from larva in white (C-S) and Canton-S flies.

<table>
<thead>
<tr>
<th>Genotype and treatment</th>
<th>Standard Diet</th>
<th>High Sucrose Diet</th>
<th>Delay of emergence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canton-S</td>
<td>182.9 ± 18.9 (n=516)</td>
<td>253.8 ± 24.5* (n=465)</td>
<td>40</td>
</tr>
<tr>
<td>white (C-S)</td>
<td>195.4 ± 22.2* (n=385)</td>
<td>234.2 ± 31.6** (n=261)</td>
<td>20</td>
</tr>
</tbody>
</table>

Mean ± standard deviation (hrs); n: number of pupae
Mann-Whitney two tailed test: *p<0.0001 in comparison with Canton-S; **p<0.0001 in comparison with Standard diet.

Table 2. Effect of high sucrose diet on imago eclosion white (C-S) and Canton-S flies.

<table>
<thead>
<tr>
<th>Genotype and treatment</th>
<th>Standard Diet</th>
<th>High Sucrose Diet</th>
<th>Delay of eclosion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canton-S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>322.0 ± 17.1 (n=144)</td>
<td>388.1 ± 23.9* (n=144)</td>
<td>20.5</td>
</tr>
<tr>
<td>Male</td>
<td>327.8 ± 16.7 (n=126)</td>
<td>392.7 ± 24.1* (n=111)</td>
<td>19.8</td>
</tr>
<tr>
<td>white (C-S)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>349.3 ± 36.3* (n=165)</td>
<td>380.5 ± 32.1* (n=108)</td>
<td>9</td>
</tr>
<tr>
<td>Male</td>
<td>357.9 ± 35.2* (n=163)</td>
<td>382.7 ± 33.6* (n=114)</td>
<td>7</td>
</tr>
</tbody>
</table>

Mean ± standard deviation (hrs); n: number of imago.
Mann-Whitney two tailed test: *p<0.0001 in comparison with flies on standard diet; **p<0.0001 in comparison with Canton-S.
Considering high association of obesity and T2D [26] and possible involvement of Trp-Kyn pathway in development of obesity [3,6,27-29], it might be of interest to study development of HSD-induced obesity [11 white mutants of Drosophila melanogaster.

In conclusion, present study revealed that attenuation of HSD-induced development of IR in Drosophila model of T2D might result from the deficiency of Trp transport into cell without affecting TDO levels. We have previously reported that TDO deficiency attenuated HSD-induced IR development as well [15]. Our data provide further support for hypothesis that dysregulation of Trp-Kyn pathway is one of the pathophysiological mechanisms and potential target for early diagnosis, prevention and treatment of IR/T2D [4-7].

Acknowledgements

GF Oxenkrug is a recipient of MH104810. Paul Summergrad is a non-promotional speaker for CME outfitters, Inc.

References