Current experience in intraocular fine needle aspiration biopsy in Mexican-Mestizo population

Daniel Moreno-Páramo¹, Marcelo Baizabal Castro¹, Fernando Pérez-Pérez², Ivette Hernández-Ayuso²*, Dolores Ríos y Valles-Valles², Leonora Chávez-Mercado¹ and Abelardo A. Rodríguez-Reyes²

¹Ophthalmology Service, Ophthalmologist, Retina and Vitreous Surgery Department, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico
²Ophthalmic Pathology Service, Ophthalmologist, Ophthalmic Pathologist. Asociación para Evitar la Ceguera en México, I.A.P Hospital “Dr. Luis Sánchez Bulnes”, Mexico

Abstract

Background: Since the first intraocular biopsy performed in 1868 [1] by Hirshberg and experience published by Jackobiec in 1979, fine-needle aspiration biopsy (FNAB) in the eye has been used for several intraocular tumors [2].

In developed countries there is wide experience regarding intraocular FNAB, in contrast to developing countries where this diagnostic tool has been left aside.

Aim/Objective: To inform the first number of cases of intraocular FNAB performed in Mexican-Mestizo patients of the retina service at the General Hospital “Eduardo Liceaga” in Mexico City.

Material and methods: FNAB were performed using general anesthesia. Conjuctival incision at 4 mm from limbus followed by the insertion of a 23 gauge needle attached to a syringe using a connector tubbing. Aspiration of 0.10 cc of undiluted vitreous was realized. After wound closure cryotherapy was applied. Vitreous smears were performed and remaining material processed in a cell block. Preparations were stained with Hematoxylin-Eosine and Peryodic Acid Shiff and evaluated under conventional light microscopy.

Results: There were a total of 7 cases. The histopathological diagnosis were 2 cases of Coats’ disease, an intraocular invasive squamous cell carcinoma from the conjunctiva, ciliary body melanocytoma (magnocelullar nevus), acute endophtalmitis, non Hodgkin’s lymphoma and amelanotic melanoma. Complications were one retinal detachment and a vitreous hemorrhage.

Conclusions: In difficult cases after the exhaustive clinical evaluation, FNAB becomes a very good choice as a diagnostic tool. In order to minimize serious potential eye complications we strongly advice intraocular FNAB to be performed by trained subspecialists and the microscopic evaluation should be interpreted by an expert ophthalmic pathologist. Althought in our country there is limited experience, first results are encouraging.

Introduction

Hirschberg performed the first intraocular biopsy in 1868 [1] then Jackobiec published his experience in 1979. Since then fine-needle aspiration (FNAB) biopsy in the eye, has been used for several intraocular tumors [2].

In underdeveloped countries this diagnostic tool has been left aside, because the fear of tumoral seeding in to the needle tract [3], the lack of technology for adequate specimen processing and accurate interpretation.

The accepted indications for intraocular FNAB are 1) Major diagnostic uncertainty, 2) Amelanotic mass in a patient with history of previous non ocular malignancy, 3) Patient refuses treatment until malignancy is confirmed, 4) Suspected re-growth following an intraocular mass, 5) Prognostication is required, 6) Patient agree to be included in a scientific study [4], 7) Amelanotic mass in a patient without history of systemic malignancy. About one third of patients with intraocular metastasis ignore they have a primary malignancy elsewhew [5]. In this group intraocular FNAB diagnosis could be useful after primary tumor is localized and treated [6]. For intraocular FNAB Shields et al. reported rates of sensitivity 100% and specificity 98% [7,8].

Methods

According to the declaration of Helsinki, patients from the Hospital General de México “Eduardo Liceaga” retina service with clinical suspicion of intraocular malignancy and doubtful diagnosis were considered candidates for FNAB. In the presence of a potential sight or life threatening disease without a realiable diagnosis after exhaustive clinical examination, ultrasound, fluorescein angiography and computed tomography evaluation. Informed consent was explained and signed in all the cases.

FNAB was performed in the operating room (OR), keeping aseptic techniques and using general anesthesis. After topical 5% povidone iodine antiseptis conjuctiva was incised at 4 mm from the corneo...
scleral limbus. A 23 gauge needle attached to a straight polyethylene connector tubing (12 inches long) to a 10 cc syringe was introduced in the sclera at ciliary body pars plana level. From the syringe 0.10 cc of undiluted vitreous was aspirated (Figure 1). Scleral and conjunctival wounds were closed with 7-00 polyglactin 910 suture (vicryl), followed by 3 spots of cryotherapy. Material from syringe was sent to ophthalmic pathology service immediately. Smears were performed and the remaining material centrifugated for cell block. After fixation in 10% formalin for 24hrs, paraffin embedded 4 microns sections were stained with Hemtoxylin- Eosine (H&E) and Peryodic Acid Shiff Stain (PAS). Subsequent conventional light microscopy evaluation by ophthalmic pathologist.

Results

There were a total of 7 patients that underwent intraocular FNAB. Microscopic evaluation revealed 2 cases of Coats' disease (Figure 2), and intraocular invasive squamous cell carcinoma from the conjunctiva, ciliary body melanocytoma (magnoceleular nevus) (Figure 3), acute endophalmitis, non Hodgkin’s lymphoma and amelanotic melanoma. Complications were a case with retinal detachment and another with vitreous hemorrhage.

Discussion

Usually clinical examination with non-invasive techniques and image studies are enough for the diagnosis of intraocular tumors. However in some cases establishing accurate diagnosis can be challenging, in these cases FNAB may be helpful. Samples may be obtained via anterior segment, such as aqueous tap, iris and ciliary body through iridectomy in trained hands represents a useful diagnostic media. It is important to know the context that prevails, its scope and limitations in our medical environment.

Histopathologic interpretation of the FNAB is crucial, surgeons should be aware that there is an increased risk of misdiagnosis because the small amount of tissue obtained, besides the technology related to sample handling. Ideally liquid-based cytology (ThinPrep® processing system for ophthalmic FNAB samples). This method is recommended because it optimizes cell yield and preservation and standardizes slide preparation for interpretation in this setting of limited material. Despite liquid-based cytology is available in Mexico, it has not been used yet in the ophthalmic pathology field. Slides processing is done manually adding conservation artifacts and causing overlapping of cells, making more complex and difficult the microscopic interpretation. Routine stains for intraocular FNAB are Papanicolaou, Diff-Quick, Hematoxilin- Eosine and Peryodic Acid Schiff. The cell block initial evaluation is under routine stains and further immunohistochemistry study.

Even with the sinuous panorama regarding intraocular FNAB in Mexico, first results are encouraging. Despite it is not innocuos FNAB in trained hands represents a useful diagnostic media. It is important to know the context that prevails, its scope and limitations in our medical environment.

References


11. Cohen VM, Dinakaran S, Parsons MA, Rennie IG (2001) Transvitreal fine needle aspiration biopsy: the influence of intraocular lesion size on diagnostic biopsy result. Eye (Lond) 15:143-147. [Crossref]


