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Abstract
Gastroenteropancreatic Neuroendocrine Tumor (GEP-NET) originates from the hormone producing cells of the gut along with rectum and pancreas. GEP-NET 
represents 75% of all neuroendocrine tumors (NETs). The incidence is 2.5 to 6.2 cases per 100,000 population and 5-year mean survival rate of 60% in the United 
States. No significant risk factor have been identified. But 25% of GEP-NETs have been associated with hereditary conditions like Multiple Endocrine Neoplasia 
type 1 (MEN-1), type-2 (MEN-2), Von Hippel Lindau disease (VHL gene), tuberous sclerosis complex (TSC) and neurofibromatosis type-1 (NF-1). Alterations 
and loss of various chromosomes result in the progression of GEP-NETs. Researchers are still challenged in exploring innate and adaptive immune systems. 
Immunotherapy has shown a promising development in the past few years. One optimistic treatment modality is immunotherapy, with much progress seen in the last 
decade. We review all the different classes of drugs, FDA approved or still under clinical trials directed at the therapy of the GEP-NET.
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Introduction
Gastroenteropancreatic Neuroendocrine Tumor (GEP-NET) 

originates from the hormone producing cells of the gut along with 
rectum and pancreas. In 2004, approximately 5.25 new cases per 
1,00,000 population were diagnosed for GEP-NET as compared to 
earlier 3 cases per 100,000 population [1]. GEP-NET represents 75% of 
all neuroendocrine tumors (NETs) [2]. According to the Surveillance, 
Epidemiology and End Results (SEER) Program database, the incidence 
is 2.5 to 6.2 cases per 100,000 population and 5-year mean survival rate 
of 60% in the United States [3]. There is an increase of about 400% in 
the incidence since the past 3 decades [4,5]. It includes different types of 
histopathological and genetic characteristics. The male-to-female ratio 
is 5.35:4.76 with the predominance of male over female and higher 
incidence observed between the age of 40 to 50 years [1].

GEP-NETs develop in hormone producing cells in the gut and 
pancreatic areas. They are classified on the basis of embryonic site 
of origin and the hormones secreted by them, in the course. The 
classifications of GEP-NETs are as follows:

1. 	Functional Carcinoids: Aberrant/excessive secretion of serotonin

2. 	Insulinoma: Aberrant/excessive secretion of insulin, pro-insulin 
and C-peptide

3. 	Gastrinoma: Aberrant/excessive secretion of gastrin

4. 	Glucagonoma: Aberrant/excessive secretion of glucagon

5. 	Somatostatinoma: Aberrant/excessive secretion of somatostatin

6. 	Vasoactive Intestinal Peptidoma: Aberrant/excessive secretion of 
vasoactive intestinal peptide (VIP)

The symptoms associated with GEP-NETs are dependent on the 
type of hormone secreted and include: carcinoid syndrome, Zollinger-
Ellison syndrome, diabetes, hypoglycemia, gall stones, cutaneous and 
visceral ulcers, diarrhea and acromegaly [6].

Etiology/Predisposing factors
For a large proportion of GEP-NETs, no significant risk factor 

have been evident [7]. Some conditions like ulcerative colitis, pre-
existing diabetes mellitus and hypergastrinemia have been linked to 
this cancer [7-10]. However, the clear origin is still not known. Various 
risk factors associated with GEP-NET, include hereditary conditions 
like Multiple Endocrine Neoplasia type 1 (MEN-1), type-2 (MEN-2), 
Von Hippel Lindau disease (VHL gene), tuberous sclerosis complex 
(TSC) and neurofibromatosis type-1 (NF-1) [11-16]. Approximately, 
25% of GEP-NETs have been associated with these risk factors. In such 
patients, NETs develop 15 years earlier than the stipulated age of the 
development of sporadic tumors [13,17]. In about 25%-75% of the 
patients with MEN-1, pancreatic NETs are proposed to develop [13].

In patients with Von-Hippel-Lindau disease, NETs are of benign 
origin [13,15,18]. NET is rarely found (1%) in patients with NF-1 and 
TSC and hence, does not form the part of the major clinical feature. 
However, if present, it is observed in approximately 30% of the cases of 
somatostatinomas in patients with NF-1 [16].

Pathophysiology and molecular basis [19]
GEP-NETs are the tumors of embryonic origin. The mutations and 

loss of heterozygosity (LOH) of several genes at different chromosomal 
locations forms the molecular basis of GEP-NETs.

Chromosome 11q: Unlike foregut NETs, the NET of midgut 
region does not exhibit MEN1 gene mutations. However, as per some 
studies, the NET of ileal and duodenal region does show the loss of 
11q chromosome in 22% of cases. This region encodes for succinate 
dehydrogenase (SDHD), a tumor suppressor gene. These tumors also 
represent the loss of heterozygosity at the location of the SDHD gene 
present on the 11q23 chromosome [20]. Based on various studies, the 
NET of midgut origin also shows the loss of chromosomes at 9p location 
by 21%, 18p by 38% and 18q by 33% [21,22]. The chromosomal gain at 
17q and 19p site is reported in 57% of cases. Loss of heterozygosity is 
seen in 88% cases at chromosome 18 [23]. All these reports indicate 
that NET tumors follow alterations at various chromosomes and 
modification of different molecular pathways.

Chromosome 3p: Chromosome 3p, which is deleted in 30% of 
pancreatic NETs is associated with a number of genes which includes 
VHL, retinoic acid receptor-β (RAR-β), MLH1 and RASSF1A. All of 
them belong to the class of tumor suppressor genes. RAR-β is associated 
with the process of apoptosis and development of embryo. In a study 
conducted by Chan et al., it was found to be hypermethylated by 25% 
in gastric NETs and none in the pancreatic NETs [24]. In another study 
conducted by House et al., it was observed to be hypermethylated by 
25% in pancreatic NETs [25]. A study conducted by House et al., for 
hMLH1 hypermethylation, which is a repairing gene for mismatching 
of DNA,,hyper-methylation was found in 23% of pancreatic NETs [26]. 

RASSF1A is known to interact with Ras oncogene. It is present at 3p21.3 
chromosomal loci. It is inactivated due to epigenetic hypermethylation 
caused by a promoter [27]. It also inhibits the concentration of cyclin 
D1, resulting in cell cycle arrest [28]. Hyper-methylation of RASSF1 
A was observed in 32% of NETs and 83% in pancreatic NETs [29, 30].

Chromosome 11q13: In the vicinity of MEN1 gene, there exists 
Phospholipase C β3 (PLCB3) on chromosome 11q13. It regulates the 
signal transduction via receptors. It also helps the programmed cell 
death protein 4 (PDCD4) genes to be expressed, which is a tumor 
suppressor gene. In a study conducted by Stalberg et al., in 82 cases of 
NETs, 18% exhibited loss of expression [31].

Cell Cycle Regulators: Alterations in the cell cycle pathway are 
manifested in almost all the cancer [32]. Cyclin- dependent kinases-2,4 
and 6 (cdk2, cdk4/6) control the transition of cell cycle from one phase 
to another. Cyclin D1 leads to the phosphorylation and inactivation 
of retinoblastoma tumor suppressor gene (Rb) and acts as an essential 
cofactor for cdk4/6. The inactivated Rb releases and advances E2F, 
a transcription factor, through restriction point. E2F regulates the 
metabolism of DNA along with cyclin E and A. Cyclin E phosphorylates 
the Rb completely by forming cyclinE-cdk2 complex.

The Cip/Kip family acts as an inhibitor of cdk2. It includes: p21CIP1, 
p27KIP1 and p57KIP2 [33]. INK4 proteins inhibit cdk4 and cdk6. INK4 
proteins i.e- INK4a, INK4b, INK4c and INK4d, involve Rb and p53 
tumor suppressor pathways and hence, restricts the tumor development. 
p16INK4a and p14ARF are encoded by INK4a [34]. p16INK4a acts as a 
sequestering agent and forms a cdk4-cdk6 complex. This complex leads 
to the release of p27KIP1, which acts as cyclinE/cdk2 inhibitor.

p53 stabilization and consequent cell cycle arrest are carried out by 
p14ARF. It inhibits MDM2, a negative regulator of p53. Another, cdk4/6 
inhibitor, p18INK4C is encoded by INK4c gene [35].

Homozygous deletions or hyper-methylation of p16INK4α/p14ARF 
genes located at 9p21 chromosomal location have been associated with 
up to 92% of NETs in some studies. In a study conducted by Chan et 
al., hyper-methylation of p16INK4α and p14ARF was exhibited in 31% and 



Allen T (2019) Immunotherapy and gastroenteropancreatic neuroendocrine tumor

 Volume 3: 3-7Gen Med Open, 2019          doi: 10.15761/GMO.1000155

44% GI NETs, while only 9% of hyper-methylation was identified in 
pancreatic NETs [24].

p18INK4c/p27KIP1 are also proposed to be involved in NET 
pathogenesis. In pancreatic NETs, the p18 location on 1p32 
chromosome is deleted, while p27 and p21 locus are not. According 
to a study conducted by Kawahara et al, the locus p21, present on 
chromosome 6p12 was over expressed in 66% cases of GI NETs of 
malignant origin.

In a study, GI NETs of malignant and benign nature elucidated 
cyclin D1 oncogene (CCND1) over expression in 100% and 94% cases, 
respectively [36]. CCND1 is located on 11q13 site of chromosome [37]. 
According to a study, 65% of pancreatic NETs were proposed to over 
express cyclin D1 [38].

Immunotherapy
Figure 1 represents various molecular pathways based 

immunotherapy (Figure 1).

Kinase inhibitors
FDA-Approved Kinase Inhibitors: Sunitinib is the only FDA 

approved immunotherapeutic for the treatment of pancreatic NETs.

Sunitinb: The orally bioavailable indolinone-based tyrosine kinase 
inhibitor with potential antineoplastic activity [39]. Sunitinib blocks the 
tyrosine kinase activities of vascular endothelial growth factor receptor 
2 (VEGFR2), platelet-derived growth factor receptor b (PDGFRb), 
and c-kit, thereby inhibiting angiogenesis and cell proliferation. This 
agent also inhibits the phosphorylation of Fms-related tyrosine kinase 
3 (FLT3), another receptor tyrosine kinase expressed by some leukemic 
cells.

Indication and use: Sunitinb is a kinase inhibitor indicated for the 
treatment of pNET in patients with unresectable locally advanced or 
metastatic disease.

Pharmacokinetics: Tmax: 6 to 12 hours, t1/2: 40-60 hours. AUC and 
Cmax increases as the dose increases in the range of 25-100mg.

Figure 1. Targeted therapy for GEP-NETs [66]
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Warnings: Severe hepatotoxicity and deaths have been reported, 
hazards to pregnant women and fetus, prolonged QT interval, cardiac 
toxicity, hypertension, thyroid dysfunction, adrenal hemorrhage. It is 
advised that people undergoing surgery should stop taking sunitinib.

Adverse events: Various adverse reactions that are associated with 
sunitinib are weakness, fever, stomatitis, edema, rashes, discoloration 
of skin, cough, bleeding, pain in back, taste alteration, constipation, 
change in colour of hairs and texture of skin.

Non-FDA approved Kinase Inhibitors
Some of the kinase inhibitors that are under clinical trials in phase 

I-III are as mentioned in the Table 1.

mTOR inhibitors
FDA-Approved mTOR Inhibitors

Everolimus: A derivative of the natural macrocyclic lactone 
sirolimus with immunosuppressant and anti-angiogenic properties 
[56]. In cells, everolimus binds to the immunophilin FK Binding 
Protein-12 (FKBP-12) to generate an immunosuppressive complex 
that binds to and inhibits the activation of the mammalian Target of 
Rapamycin (mTOR), a key regulatory kinase. Inhibition of mTOR 
activation results in the inhibition of T lymphocyte activation and 
proliferation associated with antigen and cytokine (IL-2, IL-4, and IL-
15) stimulation and the inhibition of antibody production.

Indications & use: Everolimus is a mTOR inhibitor that is 
indicated for adults with PNET that are unresectable, locally advanced 
or metastatic.

PD/PK: Tmax: 1-2 hours, Elimination t1/2: 30 hours. With the increase 
in the dose within the range of 5 mg to 70mg, Cmax increases.

Warnings: Non-infectious pneumonitis, oral ulcers, renal failure, 
impaired wound healing, alterations in laboratory tests, vaccinations, 
embryo-fetal toxicity.

Adverse Events: The adverse reactions include reduced appetite, 
rashes, diarrhea, stomatitis, headache, and nausea, pain in abdomen, 
edema, cough, skin rashes and infection.

Non-FDA approved mTOR inhibitors: The below mentioned 
mTOR inhibitors are under clinical trials in Phase-II [57]:

Temsirolimus
An ester analog of rapamycin. Temsirolimus binds to and inhibits 

the mammalian target of rapamycin (mTOR), resulting in decreased 
expression of mRNAs necessary for cell cycle progression and 
arresting cells in the G1 phase of the cell cycle. mTOR is a serine/
threonine kinase which plays a role in the PI3K/AKT pathway that is 
upregulated in some tumors.

Proteasome inhibitors
Non-FDA approved proteasome inhibitors: There is no 

proteasome inhibitor that is currently approved by FDA for GEP-NETs. 
However, the below mentioned proteasome inhibitors are under clinical 
trials in Phase-II [58-59].

Carfilzomib: An epoxomicin derivate with potential antineoplastic 
activity. Carfilzomib irreversibly binds to and inhibits the chymotrypsin-
like activity of the 20S proteasome, an enzyme responsible for 
degrading a large variety of cellular proteins. Inhibition of proteasome-
mediated proteolysis results in an accumulation of polyubiquinated 
proteins, which may lead to cell cycle arrest, induction of apoptosis, 
and inhibition of tumor growth.

Bortezomib: It is 26S proteasome inhibitor with anticancer 
properties. By inhibiting it, bortezomib hampers several signaling 
pathways. This results in cell cycle arrest, differentiation and anti-
angiogenesis. It also acts as NF-kappaB inhibitor and hence reduces cell 
survival, angiogenesis and growth of tumor.

Monoclonal antibodies (MABs)
Non-FDA Approved MABs: There are no MABs that are currently 

approved by FDA for GEP-NETs [60-65]. However, many MABs are 
under clinical trials in phase I-III as mentioned below:

Bevacizumab: It is a recombinant monoclonal antibody that acts 
against the pro-angiogenic cytokine, VEGF. It acts by adhering to 
VEGF and prevents it binding to its receptor, hence affecting tumor 
growth and associated blood vessels.

Ganitumab: It is an IGF-1R inhibitor monoclonal antibody having 
anti-neoplastic activity. It adheres to IGF-1R and triggers a cascade of 
signals resulting in inhibition of P13K/Akt pathway, thus, inhibiting 
cell proliferation and apoptosis.

Pertuzumab: It is an HER-2 tyrosine kinase receptor inhibitor 
monoclonal antibody. It inhibits dimerization of receptor and protein. 

Kinase Inhibitors Clinical trial identifier number Phase Study design Target
abozantinib NCT01466036 Phase-II Safety/ Efficacy Study, Open Label MET, VEGFR

azopanib NCT01841736; NCT01465659 Phase-II; Phase-I/II Efficacy Study, Double Blind; Safety/ Efficacy Study, Open Label VEGFR, PDGFR
Sorafenib NCT00131911; NCT00942682 Phase-II; Phase-I Efficacy Study, Open Label; Safety Study, Open Label TK Inhibitors

Trebananib NCT01548482 Phase-I Safety Study, Open Label TK Inhibitors
Motesanib NCT00427349 Phase-II Treatment, Open Label TK Inhibitors
Vatalanib NCT00227773 Phase-II Treatment TK Inhibitors
Axitinib NCT01435122 Phase-II Safety/ Efficacy Study, Open Label TK Inhibitors

Regorafenib NCT02259725 Phase-II Efficacy Study, Open Label TK Inhibitors
Gefitinib NCT00075439 Phase-II Efficacy Study, Open Label TK Inhibitors
Dovitinib NCT02108782 Phase-II Efficacy Study, Open Label TK Inhibitor
Famitinib NCT01994213 Phase-II Safety/ Efficacy Study, Open Label TK Inhibitors

X-82 NCT01784861 Phase-I/II Safety/ Efficacy Study, Open Label TK Inhibitor

Dactolisib (BEZ235) NCT01628913 Phase-II Safety/
Efficacy Study, Open Label PI3K/mTOR Inhibitor

BYL-719 NCT02077933 Phase-I Safety/ Efficacy Study, Open Label PI3K Inhibitor

Table 1. Non-FDA approved kinase inhibitors [40-55]
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This results in inactivation of HER signaling pathways and favors 
apoptosis.

Cixutumumab: It is a complete human monoclonal body derived 
from IgG1 and possesses anti-neoplastic activity. It adheres to the IGF-
1R and hence, inhibits the PI3K/AKT pathway activation resulting in 
tumor cell death.

Heat shock protein inhibitors:
Non-FDA Approved Heat Shock Protein Inhibitors: There are no 

heat shock protein inhibitors that are currently approved by FDA for 
GEP-NETs. However, many are under clinical trials in phase I-III as 
mentioned in the Table 2.

Cytokine therapy
Non-FDA approved cytokine therapy: There is no cytokine 

therapy that is currently approved by FDA for GEP-NETs. However, the 
cytokine therapy available for GEP-NETs that are under clinical trials in 
phase I-III are as in the Table 3:

HDAC inhibitor
Non-FDA approved hdac inhibitor: There is no HDAC inhibitor 

that is currently approved by FDA for GEP-NETs [71]. However, 
some therapies are under clinical trials in phase I-III for GEP-NETs as 
mentioned below:

Romidepsin: It is an antineoplastic antibiotic derived from the 
bacterium Chromobacterium violaceum. It is an HDAC inhibitor that 
alters gene expression, resulting in the halt of cell cycle, apoptosis and 
inhibition of proliferation of cells.

Growth factor inhibitors
Non-FDA approved growth factor inhibitors: There is no growth 

factor inhibitor that is currently approved by FDA for GEP-NETs [72-
73]. Clinical trials undergoing in phase I-III are as mentioned below:

Ziv-Aflibercept: It is a recombinant protein that blocks VEGF to 
adhere to its respective receptor resulting in inhibition of angiogenesis, 
metastasis and tumor growth.

Somatostatin analogues
FDA approved somatostatin analogues

Lanreotide: It was approved by the FDA On December 16, 
2014, the U. S. Food and Drug Administration approved lanreotide 
(Somatuline Depot Injection, Ipsen Pharma) for the treatment of 
patients with unresectable, well or moderately differentiated, locally 
advanced or metastatic gastroenteropancreatic neuroendocrine 
tumors (GEP-NETs) to improve progression-free survival. Lanreotide 

was previously approved for the long-term treatment of acromegalic 
patients who have had an inadequate response to surgery and/or 
radiotherapy, or for whom surgery and/or radiotherapy is not an option 
[74].

It binds to somatostatin receptors (SSTR), specifically SSTR-2 and 
also to SSTR-5 with a lesser affinity. However, compared to octreotide, 
this agent is less potent in inhibiting the release of growth hormone 
from the pituitary gland. Furthermore, lanreotide has an acute effect 
on decreasing circulating total and free insulin-like growth factor 1 
(IGF-I). This agent is usually given as a prolonged-release microparticle 
or autogel formulation for the treatment of acromegaly and to relieve 
the symptoms of NETs. 

Non-FDA approved somatostatin analogues [75]
Some of the other clinical trials going on for GEP-NETs are 

mentioned below:

Sandostatin LAR: It is a somatostatin analogue that adheres to 
these receptors. This receptor is proposed to be expressed in NETs and 
is responsible for apoptosis, mediated through a somatostatin receptor. 
Along with this, it also affects the process of angiogenesis and insulin 
like growth factor 1 (IGF-1).

Conclusion
GEP-NETs belong to the class of NETs. It is a rare cancer and 

MEN 1 is the major predisposing factor associated with them. 
Alterations and loss of various chromosomes result in the progression 
of GEP-NETs. Researchers are still challenged in exploring innate and 
adaptive immune systems. Immunotherapy has shown a promising 
development in the past few years. Although, there are very few 
FDA approved immunotherapeutic agents available for GEP-NETs, 
a number of clinical trials are ongoing for various classes like MABs, 
adoptive therapy, vaccines and TK inhibitors. The complete perspective 
of immunotherapy treatment has not been realized and/or utilized. 
Proper preclinical and clinical designs are the important pillars in 
understanding the future of immunotherapy in treating cancer patients.
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