
Review Article

Global Anesthesia and Perioperative Medicine

Glob Anesth  Perioper Med, 2015        doi: 10.15761/GAPM.1000122  Volume 1(3): 84-92

ISSN: 2059-0512

Anesthesia, cytokines and cancer recurrence
Yuji Kitamura1, Iolanda Di Biaso2, Pablo Mauricio Ingelmo1 and Gianluca Bertolizio1*
1Department of Anesthesia, McGill University Health Centre, Montreal Children’s Hospital, Montreal, QC, Canada
2Instituto comprensivo “KOINÈ”, Monza, Italy

Abstract
Cytokines are essential mediators for the regulation of both innate and acquired immunity and hematopoiesis. They modulate immune cell signaling, activation, 
adhesion and functioning. They regulate the individual response to several insults such as infection, inflammation, trauma, and pain. Moreover, the balance between 
pro-inflammatory and anti-inflammatory cytokines is critical for the evolution of surgical complications and tumor progression.

Several drugs, including anesthetic agents, influence cytokines secretion. Opioids, inhalational agents, intravenous and local anesthetics have shown different effects 
on immune system and cytokine expression. Therefore, anesthesia may play an important role in postoperative recovery and outcome of cancer patients.

The aim of the present article is to review the main role of some important cytokines and the effect of anesthesia techniques and drugs on their secretion. Furthermore, 
current clinical evidence regarding the effects of anesthesia on cancer recurrence will be discussed.
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Cytokines and immune system
Cytokines are proteins expressed in both innate and acquired 

immune system and are often named according to the secreting cells 
(i.e., lymphocytes, interleukins, etc.). They are essential mediators of 
the natural (non-specific, innate) immunity, which is the initial step 
of the inflammatory response. They also play a pivotal role during 
the specific immunity, which occurs after exposure to antigens, 
as they regulate lymphocyte and leukocyte activation, growth and 
differentiation, and the immune-mediated inflammation [1].

The cytokines have different structures, but also common aspects, 
which are summarized in Table 1.

The aim of the present article is to review the main role of some 
important cytokines and the effect of anesthesia techniques and drugs 
on their secretion.

Cytokines receptors

The cytokines receptors are formed by one or more transmembrane 
proteins: the extracellular portion binds the cytokine, whereas the 
cytoplasmic part starts the signal cascade. Based on the extracellular 
portion, they are divided in five categories.

1)	 Type I receptors, which have four α-helical stands and 
contain four cysteine residues and the amino acid motif tryptophan-
serine-X-tryptophan-serine (WSXWS).

2)	 Type II receptors, structurally similar to Type I receptors, but 
without the sequence WSXWS.

3)	 Interferon receptors, which have domains rich of cysteine 
and can induce apoptosis or stimulate gene expression;

4)	 Immunoglobulin receptors, which have extracellular 
domain for immunoglobulins (Ig) and different mechanisms for single 
transduction;

5)	 Seven-transmembrane spanning family receptors, which pass 

the membrane seven times and transduce the signal through G-protein 
pathway.

Cytokines function

Provided that the same cytokine may be produced during both 
innate and acquired immunity response, cytokines can be classified 
according to their functions:

1)	 Cytokines regulating the innate immunity and secreted by 
stimulated macrophages;

2)	 Cytokines regulating the acquired immunity and secreted 
by lymphocytes;

3)	 Cytokines stimulating the hematopoiesiss and secreted by 
bone marrow, leucocytes and other cells.

Common aspects of Cytokine
Their secretion is brief and limited in time
They have pleiotropic properties, because they have the same effect on multiple cells
They may affect other cytokines
They may have autocrine, paracrine or endocrine function
They bind specific receptor on the membrane
The expression of their receptor on target cells is regulated by signals that are outside the cell
The targeted cell responds with phenotype modifications and acquisition of new functions

Table1. Common aspect of cytokines.
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Cytokine expressed during the innate immunity 
response
Tumor necrosis factor (TNF-α, TNF-β)

The TNF is responsible for the initial phase of acute inflammatory 
response, especially against Gram-negative bacteria. It exists in two 
forms, α and β, which have similar effects and equally bind both forms 
of the TNF receptor (TNFR-I and TNFR-II).

It is mainly produced by mononuclear phagocytes after bacterial 
infection (i.e., after contact to LPS), but it can also be secreted by 
T-lymphocytes, natural killers (NK) cells and mast cells [2].

T-Lymphocytes and NK cells, trough INF-y secretion, augment 
TNF synthesis. In general, TNF-α promotes the recruitment of 
neutrophils and monocytes thought the expression on the endothelial 
surface of specific receptors. It also increases the body temperature 
(stimulating the hypothalamus along with IL-1) and the amyloid A 
protein concentration in the hepatocytes (similarly to IL-6 and IL-
1), and promotes the secretions of prostaglandins, platelet-activating 
factor (PAF), glucocorticoids and eicosanoids [3].

At high concentrations, it is responsible for cachexia (loss of 
muscular and adipose tissue) [4], certain autoimmune disorders [5], 
and the decrease of myocardium contractility and vascular tone, which 
cause cardiovascular collapse in sepsis [6].

Interleukin-1 (IL-1)

The IL-1 is synthesized by mononuclear phagocytes in response 
to bacterial infection and other cytokines, such as TNF. It is also 
secreted by neutrophils, macrophages, epithelial and endothelial cells 
[7]. Like TNF, IL-1 is an important mediator of the inflammatory 
response [8]. Both IL-1α and IL -1β bind the same receptor and have 
the same function, but only IL-1β is secreted active. Two receptors 
associated to IL-1 exits: IL-1RI, expressed by almost all cells, and 
IL-1RII, present on the B-lymphocytes surface. The IL-1R does also 
exist in soluble form. At low concentrations, IL-1 promotes leukocytes 
adhesion, stimulates T-lymphocytes, B cells, macrophages, and causes 
the release of prostaglandins, IL-6, IL-8 and tissue factor III. At high 
concentrations, IL-1 induces fever, muscular and adipose catabolism 
and anorexia [9]. The IL-1ra represents the receptor antagonist and has 
the function of endogenous autoregulation of IL-1 activity [10].

Interleukin -6 (IL-6)

It is pro-inflammatory molecule and it is produced by mononuclear 
phagocytes, endothelial cells, and fibroblasts in response to several 
stimuli, such as LPS, IL-1, IL-2, TNF, INF, platelet-derived growth 
factor and viruses. During the innate response, it stimulates the acute-
phase proteins, whereas it promotes the B-lymphocytes growth when 
specific immunity is initiated. It also plays a role in hematopoiesis 
and it has been shown to have anti-inflammatory properties [11]. 
Furthermore, it is involved in diseases such as lupus erythematous and 
rheumatoid arthritis [12]. The IL-6 binds the receptor IL-6R, which has 
a soluble form.

Interleukin-8 (IL-8)

It is a potent chemoattractant and activator of neutrophils [13], 
and it has been implicated in cardiopulmonary bypass injury [14] and 
multiple organ failure [15].

Interleukin-10 (IL-10)

It is a potent anti-inflammatory cytokine and it is mainly produced 
by activated macrophages and T-lymphocytes. It has an inhibitory 
effect on macrophages activation and TNF production [16]. Therefore 
it has a pivotal role in regulating the immunity response [17-18].

Interleukin-12 (IL-12)

It is mainly produced by mononuclear phagocytes and dendritic 
cells, and it is involved in both innate and acquired immunity response 
[19]. Intracellular bacteria, viruses, activated T-helper lymphocytes 
and INF-y promote IL-12 production. IL-12 stimulates NK cells, 
lymphocytes CD8+ and the differentiation of lymphocytes CD4+ in T 
helper type1 (Th1). In particular, Th1 produce INF-y, which activates 
macrophages.

Interleukin-15 (IL-15)

It is produced by mononuclear phagocytes in response to viral 
infections and LPS. It promotes the early NK cells expansion [20], and 
induces IL-8 production, NF-κB  and fungal phagocytosis [21].

Interleukin-18 (IL-18)

It is produced by macrophages after contact to LPS and promotes 
the production of INF-y from NK cells and T-lymphocytes and it is 
involved in gram-positive sepsis [22]. Its pro-inflammatory effect is 
synergic to IL-12 [22].

Interferons (INF-α and INF -β)

The INF-α is mainly produced by mononuclear phagocytes, whereas 
INF-β is secreted by several cells, including fibroblasts. They have an 
important role during the early innate response to viral infections. In 
particular, they promote the cytotoxic action of lymphocytes CD8+ and 
the production of Th1.

Chemokines

They are a family of cytokines produced by several cells, such 
as endothelial and epithelial cells, and fibroblasts [23]. They mainly 
promote lymphocytemigration.

Cytokine expressed during the specific immunity 
response
Interleukin-2 (IL-2)

It is produced by lymphocytes CD4+ and lymphocytes CD8+ 
[24], and it is considered the main autocrine and paracrine growth 
factor for T-lymphocytes. It is responsible for clonal expansion and 
T-lymphocytes differentiation, as it promotes the development of 
cytotoxic Th1, and stimulates the production of IL-4, TNF-α and 
INF-y [25]. Moreover, it promotes the proliferation and the activation 
of other immune cells, such as NK cells, neutrophils, macrophages and 
B-lymphocytes. On activated T-lymphocytes, however, it also has a 
pro-apoptotic function [26] to stop their inflammatory action. It binds 
the receptor IL-2R, which is formed by subparts α, β, and γ. The IL-
R2α  exists in soluble form.

Interferon y (INF-y)

It is produced by macrophages, NK cells, T-lymphocytes CD4+ 
Th1 and CD8+. It stimulates T-lymphocytes and NK cells, which 
activate both macrophages and antigen-presenting cells, and promotes 



Kitamura Y (2015) Anesthesia, cytokines and cancer recurrence

 Volume 1(3): 84-92Glob Anesth  Perioper Med, 2015        doi: 10.15761/GAPM.1000122

the T-lymphocytes differentiation in Th1, counteracting the effects of 
IL-4 [27].

Interleukin-4 (IL-4)

Lymphocytes CD4+ T helper type2 (Th2) represent the main 
source of this cytokine, which is responsible for IgE production and 
Th2 differentiation [28]. It also counteracts INF-y on macrophages by 
downregulating IL-1, TNF-α, IL -6, and IL-8 and therefore limiting the 
cell-mediated response.

Interleukin-5 (IL-5)

It is produced by lymphocytes CD4+ Th2 and activated 
macrophages. Its main function is the promotion of eosinophil 
proliferation and differentiation, the proliferation of B-lymphocytes 
and the IgA production.

Interleukin-13 (IL-13)

It is produced by lymphocytes CD4+ Th2 and some epithelial cells. 
Like IL-4, it expresses anti-inflammatory effects on macrophages, 
monocytes and B-cells, where it counteracts INF-y, but not on 
T-lymphocytes [29]. It also stimulates IL-1ra [30].

Transforming growth factor-β (TGF -β)

It is produced by several immune cells and has an 
immunosuppressive action, like IL-10 and IL-4. In fact, it inhibits 
the proliferation and the differentiation of T-lymphocytes and 
macrophages.

Cytokine that promote the hematopoiesis

The principal cytokines involved in the hematopoiesis are IL-3, 
involved in immune cells differentiation, the stem cell factor (SCF), 
involved in stem cells differentiation and proliferation, IL-7, involved 
in bone marrow production of lymphocytes, and the granulocyte-
macrophage colony-stimulating factors (GM-CSF, M-CSF, and 
G-CSF), involved in bone marrow production of leukocytes and 
delayed apoptosis of macrophages and neutrophils [31]. It is beyond 
the scope of this review to describe their function.

Anesthesia and cytokines

Immunity can be affected by anesthesia [32-34], surgical stress 
[34-38], surgical techniques [39], and postoperative pain [34,40]. Each 
anesthetic agent has different effects on the immune system [36,41,42] 
and therefore the type anesthesia may play a role in postoperative 
recovery [42] and even in cancer recurrence [43,44].

Inhalational anesthetics

Since inhalational anesthetics were brought into clinical use in 
the 1840s, research has been focused in finding the ideal agent, which 
offers smooth induction and stable maintenance of general anesthesia 
with minimal adverse effects [45,46]. Halogenated agents such as 
isoflurane, sevoflurane and desflurane are currently used to provide 
inhalational general anesthesia. Several studies have shown dose-
dependent inhibitory effects of halogenated anesthetics on both innate 
and humoral immune system [42].

Halothane, enflurane, isoflurane and sevoflurane inhibit neutrophil 
production of reactive oxygen species (ROS), suggesting that 
volatiles impair a critical step of the inflammatory response [47-49]. 
Additionally, they have shown to increase the expression of inducible 
NO synthase (iNOS), which plays a role in the induction of NO 

release from macrophages and may have protective effects during the 
inflammatory reaction [50-51].

Isoflurane, sevoflurane and desflurane are associated with a 
significant increase of pro-inflammatory cytokines IL-1, IL-8 and 
TNF-α in alveolar cells [35,52-54]. They also inhibit lymphocyte 
proliferation and the release of IL-1β and TNF-α in peripheral 
blood mononuclear cells (PBMC) [55-56]. Similar results have been 
confirmed in children [57-58]. Halothane suppresses the activity, but 
not the number, of NK cells and promotes the retention of breast cancer 
metastasis in rats [59]. Isoflurane significantly decreases the Th1/Th2 
ratio in humans [35] when compared to intravenous anesthetics; it also 
decreases circulating NK cells and increases B-lymphocytes, IFN-y, 
IFN-α, TNF-α and IL-2 [60]. 

Furthermore, inhalational balance anesthesia with sevoflurane 
is associated with higher IL-6 concentrations and more depressed 
T-lymphocyte cells (CD3+, CD4+, CD8+), activation markers (CD25+, 
CD26+, and CD69+) and HLA-DR molecules, in comparison to total 
intravenous anesthesia (TIVA) [38]. Nitrous oxide has shown to impair 
neutrophil chemotaxis and function and mononuclear cell production 
[61], and DNA synthesis [43]. In animals, it promotes lung and liver 
metastasis [62], but this effect has not been proven in humans [62]. 
Recently, the immunomodulation of new anesthetic agent xenon has 
been investigated [63]. Xenon is an odorless noble gas, normally 
present in traces in Earth’s atmosphere, and it has been used as volatile 
anesthetic [64]. It has shown hemodynamic stability, fast recovery and 
neuroprotective proprieties but high costs [65].

In vitro investigations suggest that xenon has pro-inflammatory 
effects, increasing TNF-α and IL-6 [66], and IL-1β [67] in LPS-
mediated cultures. A recent study on adults did not show any differences 
in leucocyte function in peripheral blood with xenon compared to 
sevoflurane [63].

Intravenous anesthetics
The modern intravenous anesthesia began in the 1930s with the 

introduction of barbiturates into the clinical practice, such as thiopental 
[68]. Benzodiazepines, like diazepam and midazolam, are GABA 
agonists with sedative, hypnotic, anxiolytic, anticonvulsant, and 
muscle relaxant properties; they are commonly used in premedication 
or for sedation in minor procedures [69,70]. Ketamine acts on NMDA 
receptors, and differs from other anesthetics because of its strong 
analgesic effect with minimal respiratory depression [71,72]. Etomidate 
is a GABA agonist used for induction of general anesthesia and 
sedation, and presents peculiar characteristics, such as adrenocortical 
suppression [73-75].

Propofol is a hypnotic and amnestic agent, used for both induction 
and maintenance of general anesthesia TIVA, and short procedures 
[76,77]. Dexmedetomidine is a α2 -adrenoceptor agonist, which 
induces sedative state similar to physiological sleep [78,79]. Several 
studies have shown that propofol impairs neutrophil, monocyte and 
macrophage functions. Propofol inhibits iNOS expression from 
macrophages and suppresses NO generation [80-82]. Other anti-
inflammatory effects of propofol have been observed in LPS-stimulated 
macrophages [83].

On the other hand, some investigations on healthy subjects 
suggest that propofol has no inhibitory effect on lymphocytes [84-86], 
neutrophils [87] and phagocytes [88] function. Similarly, propofol 
does not show significant inhibition of neutrophil function in severe 
brain injury patients [89]. Propofol and midazolam decrease the 
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level of extracellular IL-8 from lipopolysaccharide (LPS)-stimulated 
neutrophils, although intracellular IL-8 and mRNA levels increases 
[90]. This suggests that these agents affect the cytokine release at the 
post-translational level.

Propofol also inhibits the production of IL-10, TNF-α, IL-1β and 
IL-6 in LPS-stimulated peripheral blood mononuclear cells (PBMCs) 
[91], probably acting at the pre-translational level [81]. In endotoxin-
exposed rats, propofol, but not ketamine, blunts the TNF-α response; 
on the other hand, both drugs have inhibitory effect on the increase of 
IL-6 and IL-10 [92]. Other studies have shown that propofol inhibits 
IL-8 and increases the level of the anti-inflammatory cytokine IL-10, 
which blocks the pro-inflammatory cytokines and induces the release 
of IL-1 receptor antagonist [85,90].

Propofol, like halothane, inhibits NK activity, but does not promote 
tumor retention in the lung [59]. A study showed different effects of 
propofol and thiopental on the Th1/Th2 ratio by measuring the level of 
IFN-γ and IL-4 in PBMC [93]. High doses of propofol increased the 
Th1/Th2 ratio (INF-y/IL-4), whereas low dose did not change INF-y, 
IL-4 and IL-2 [93]. However, another study showed no change in Th1/
Th2 ratio after propofol anesthesia [35]. Thiopentone, diazepam and 
ketamine have shown to negatively affect NK activity and lung tumor 
retention [59]. Thiopental and ketamine [94] also inhibit the LPS-
induced release of IL-1, IL-6, TNF-α [95] and IL-8, and increase IL-
10 [96-97]. In healthy volunteers, thiopentone and etomidate impair 
lymphocytes function [84]. Thiopentone may have no effect on IL-2 
[93], but it decreases INF-y [93,98], IL-4 [93] and INF-y/IL-4 ratio 
[93], and impairs chemotaxis [99] and phagocytosis [88,99,100]. 
Similarly, midazolam inhibits chemotaxis [99] and IL-8 secretion [90].

Preoperative use of small doses (0.15 mg/kg) of ketamine has 
been shown to suppress the inflammatory response and release of IL-6 
and TNF-α, without altering IL-2 secretion [95]. Etomidate causes 
inhibition of T-lymphocyte function in vitro [101], but other studies 
have shown that etomidate does not affect NF-kappa B activation in 
human T-lymphocytes [102]. Etomidate increases IL-10 concentration 
and inhibits the release of IL-1 receptor antagonist after LPS-
stimulation in cultured human whole blood [85].

Dexmedetomidine, α 2-adrenoceptor agonist, has no effect on 
neutrophil functions in vitro [103]. On the other hand, dexmedetomidine 
has been shown to increase Th1/Th2 cytokine ratio in patients 
undergoing laparoscopic surgery [104]. Preemptive administration of 
dexmedetomidine also suppresses the cytokine response after LPS-
induced endotoxemia in murine model [105].

Opioids	

Opioid are a family of drugs that binds opioid δ, and κ receptors 
such as µ [106,107]. They are commonly distinguished in natural 
(opiates), such as morphine, and synthetics, like fentanyl, remifentanil, 
alfentanil and sufentanil. The activation of opioid receptors produces 
multiple effects, such as sedation, analgesia and respiratory depression 
[107]. It is known that opioid receptors are also expressed on immune 
cells [108]. The suppressive effects of opioids on immune system have 
been well established [109]. In the late 19th century, it was reported that 
phagocytosis function of leukocytes were inhibited by opioids [110] 
Opioids are considered to exert the immunosuppressive effects through 
specific receptors expressed in the nervous system and immune cells 
[111,112].

The activation of these receptors in the nervous system leads to 
the release of glucocorticoids and catecholamines, which suppress the 

peripheral immune response [113,114]. Furthermore, the stimulation 
of opioid receptors immune cells causes the suppress of their functions, 
including cytokine production [115]. Morphine inhibits neutrophil, 
monocyte, macrophage and lymphocyte functions. The suppressive 
effects of morphine may be mediated mainly by their µ3 opioid receptor, 
which influences NO release and inhibits NF-κ B pathway and the 
production of pro-inflammatory molecules [116]. Studies have shown 
that morphine inhibits IL-10 and IL-2 production from monocytes and 
macrophages [117]. Morphine supresses IFN-γ and IL-2 production of 
T-lymphocyte [117]. In addition, chronic administration of morphine 
causes a decrease in Th1/Th2 ratio, as the cytokine balance shifts from 
Th1 cytokines (IFN-γ, IL-2) to Th2 cytokines (IL-4) [118]. Compared 
to morphine, synthetic opioids such as fentanyl, remifentanil, sufentanil 
and alfentanil seem to have minimal or no immunosuppressive effects 
[32]. This difference may be secondary to the µ3 receptor, which is not 
bind by synthetic opioids such as fentanyl [119]. Although suppressive 
effects of fentanyl on NK cell have been reported in animals [120], in 
humans it has shown that fentanyl increases activity and number of 
NK cells, and CD8+ cytotoxic T-lymphocytes [121]. However, neither 
polymorphonuclear cells (PMNC) activity [122] nor cellular adhesion 
is affected [123]. Moreover, fentanyl has no effect of on the release 
of cytokine [85]. Clinical dosage of fentanyl and remifentanil do not 
change the concentration of IL-6, TNF, IL-10 and IL-2 [124], but 
remifentanil has been shown to attenuate the postoperative increase of 
IFN-γ/IL -10 ration of greater extent than fentanyl [124].

Local anesthetics
Local anesthetics, such as lidocaine, bupivacaine and ropivacaine, 

are drugs that block the nerve conduction, causing sensory and/
or motor loss. They act through the inhibition of Na+ channel on the 
nerve membrane [125]. They can be administered peripherally (local 
infiltration, topical application, plexus block), or at level of the spine 
(epidural and spinal anesthesia) [126,127]. Lidocaine can be also given 
intravenously exerting analgesic effects [128]. Several studies have 
investigated the effect of local anesthetics on immune system.

In vitro, lidocaine inhibits the IL-8 and IL-1β release [129,130] 
from epithelial cells, the IL-1β secretion from mononuclear cells 
and neutrophil function [130], the phagocytosis [130,131], and the 
migration of leukocytes [130,132]. It attenuates the formation of 
reactive oxygen metabolites [133], and the release of leukotrienes, IL-
1α  [134], and histamine [135]. Similar effects have been demonstrated 
with bupivacaine and ropivacaine [130,131,136,137].

Lidocaine also inhibits interferon-inducible IL-10 secretion 
in intestinal epithelial cells [138], attenuates IL-1β, IL -6, IL-8 and 
ICAM-1 on activated human umbilical vein endothelial cells [139], and 
impairs the secretions of IL-2, TNF-α, INF–γ [140]. Furthermore, in 
animals with LPS-induced lung injury, lidocaine attenuates the release 
of TNF-α and IL -6 [141], whereas ropivacaine reduces the expression 
of ICAM-1 and the leukocyte adhesion [142]. Local anesthetics are 
used to perform peripheral and central blocks, which can be an adjuvant 
of general anesthesia or used as sole type of anesthesia. Therefore, 
beside the direct effect on the immune system, local anesthetics affect 
the immunity by blocking the sympathetic nervous system and by 
attenuating the surgical stress [32,36].

The combination spinal/epidural anesthesia has been shown a 
significant reduction of postoperative cortisol peak with respect to 
general anesthesia [143]. This effect has been confirmed after several 
major surgeries [144]. Similarly, epidural anesthesia preserves NK cell 
cytotoxicity after abdominal surgery with respect to general anesthesia 
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alone [145]. Finally, epidural anesthesia, but not general anesthesia, 
has shown no impairment of cytokine production [146].

Does the type of anesthesia influence the risk of cancer 
recurrence? Clinical evidence

Intraoperative tumor disruption, decrease antiangiogenic factors, 
augmentation of growth factors and surgery-related immunosuppression 
have been proposed as surgical factors promoting cancer recurrence 
[34].

Most of the studies that investigated the influence of anesthesia on 
cancer recurrence have been done in animals.

Clinical studies regarding the effect on anesthesia and analgesia 
techniques on the immune function are lacking [34,44]. Interest has 
been focused to local anesthesia (peripheral and central blocks), which 
has shown beneficial effects on immunity after surgery [147] and may 
affect surgical outcome of oncologic patients [43,148-150]. Regional 
anesthesia is believed to be beneficial against cancer recurrence due to 
reduced exposure to immunosuppressive agents (i.e., nitrous oxide), 
reduced surgical stress and adrenergic stimulation, but the mechanism 
is still unclear [147].  In fact, in absence of surgical stress, both general 
and local anesthesia have minor and transient effects on immune 
function [151].

On the other hand, cancer proliferation involves several stimuli and 
mediators, which can be all affected by the anesthetics [147,152].

NK cells activity was investigated in patients undergoing 
laparotomy colectomy under either general anesthesia or epidural 
anesthesia alone [145]. Patients receiving general anesthesia had 
a significant reduction of NK cells activity (36% vs. 22%, p=0.02) 
respect to preoperative values, whereas the epidural group did not 
shown significant changes. Moreover, postoperative stress biomarkers 
(plasma and epinephrine and cortisol levels, and urinary cortisol) were 
reduced in the epidural group only. However, in this study the surgical 
indications included both cancer and not cancer lesions, patients were 
randomized, and NK cells activity was not compared between groups, 
making the results questionable.

Patients undergoing surgical resection of non-small cell lung 
cancer, in fact, showed a postoperative decrease of percentage (13.07 
± 9.81% vs. 9.6 ± 6.57% compared to preoperative values, P<0.001) 
and function (31.61 ± 21.96%,13.61 ± 9.36% compared to preoperative 
values, P=0.001) despite the use of epidural analgesia [153].

On the other hand, the association of general and epidural 
anesthesia demonstrated to attenuate the increase of IL-2 and to 
promote the return to baseline levels of CD3+, CD4+ and CD4+/CD8+ 
cells after osteosarcoma resection [154]. This data may suggest that the 
combination of general/epidural anesthesia contributes to restoration of 
IL-2 and lymphocytes T helper after surgery. However, it must be noted 
that the study included children, who were unlikely randomized in the 
epidural group (no general anesthesia/sedation). Furthermore both the 
sample size and the statistical tests are questionable. It is also possible 
that the type of general anesthetic agent (intravenous vs. inhalational) 
may blunt the beneficial effects of epidural. In fact, propofol has shown 
to increase Th1/Th2 ratio and T-helper cells percentage respect to 
isoflurane in patients undergoing pulmonary lobectomy for non-small-
cell lung cancer [155]. Several studies have shown that paravertebral 
analgesia enhances antitumorigenic cytokines, such as IL-10 [156] and 
decreases breast cancer function [157]. In particular, a retrospective 
analysis [158] investigated the recurrence-free survival time in patients 

undergoing breast cancer resection under general anesthesia with or 
without paravertebral analgesia. The paravertebral anesthesia group 
showed better tumor-free and metastasis-free survival compared to 
general anesthesia at 24 and 36 months (94% vs. 82% and 87% vs. 77%, 
respectively). Recently, women undergoing surgery for biopsy-proven 
primary breast were randomized to receive either TIVA with regional 
technique (paravertebral block) or general anesthesia with opioid 
(morphine) analgesia. Patients’ serum was collected and exposed to 
estrogen receptor-negative breast cancer cells and cells apoptosis was 
measured. Women in the regional group showed higher breast cancer 
cells apoptosis ratios compared to patients who received balanced 
anesthesia with sevoflurane and morphine (0.40 vs. 0.22, P=0.001) 
[159]. This data were confirmed in a another study [160] from the 
same institution, where TIVA with paravertebral block was associated 
to greater human donor NK cell cytotoxicity. Regional anesthesia has 
shown similar results after ovarian, colon and prostate surgery, but no 
in patients affected by melanoma [147].

Cata et al. [44] have recently reviewed over 140 studies to 
investigate the outcome of orthopedic oncologic surgical patients. 
Authors did not find any study suitable for metanalysis, but they 
confirmed the benefit of regional anesthesia in breast cancer recurrence. 
Moreover, they mentioned that little data exist in favor to regional 
anesthesia after gastrointestinal and genitourinary surgery.

In children data are lacking. Only few studies investigated the 
effect of anesthesia on children’s immunity [58], and none regarding 
cancer recurrence. However, data have shown that the surgical stress 
has an important impact in the child’s immunosuppression [161-163].

In children, regional anesthesia is almost always used in association 
to sedation or general anesthesia and has shown little or no benefits 
respect to opioids when associate to general anesthesia [40,164,165].

On the contrary, spinal anesthesia is effective in reducing stress 
response after surgery (IL-6, IL-8, cortisol, catecholamines) [166].

In pediatric oncology, the only study in the literature suggests that 
a single dose of the combination of propofol/ketamine do not alter the 
immune system in children affected by acute lymphoblastic leukemia [167].

Conclusions
The balance between pro-inflammatory and anti-inflammatory 

cytokine has been shown to be critical in the tumor progression. 
By affecting this balance, anesthesia may play an important role on 
outcome of cancer patients.

Compared to general anesthesia alone, epidural and peripheral 
anesthesia may be beneficial in reducing cancer recurrence and should 
be considered whenever is possible. However, further investigations 
are needed to clarify the relation between anesthesia and cancer, 
particularly in children.
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