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Abstract

Over 50 years ago, Professor Edwards Lorenz of MIT illustrated the sensitive dependence of numerical solutions on initial conditions (ICs), known as chaos or a
butterfly effect of the first kind. The equations he used have been referred to as the three-dimensional Lorenz model (3DLM). While the 3DLM has been extensively
examined to illustrate the role of nonlinearity in producing chaos, higher-dimensional Lorenz models have been studied in order to understand the impact of
increased degrees of nonlinearity on system stability. Compared to the 3DLM, the 5D or 6D Lorenz model (SDLM or 6DLM) requires a larger normalized Rayleigh
parameter (r) for the onset of chaos (e.g., Shen, 2014; 2015). Mathematical analysis suggests that negative nonlinear feedback associated with additional small-scale
modes in the 5D or 6DLM can effectively stabilize solutions. Here, to aid understanding regarding whether nonlinear feedback can be incorporated with one or
two additional (parameterized) terms, a revised 3DLM is proposed for emulating the negative nonlinear feedback resolved by the 5DLM. For chaotic solutions, the
critical value of the normalized Rayleigh parameter () in the revised 3DLM (~52.1) is larger than that of the SDLM (r~24.74); and is comparable to but larger
than the 7 of the corresponding 5SDLM (~42.9). The result suggests that the stability of the revised 3DLM is overestimated between 43<7<52 as compared to the
5DLM. For stable solutions, the revised 3SDLM produces the same steady-state (equilibrium-state) solutions as those in the SDLM, when parameters are kept the
same in both models (e.g., 7=35). The revised 3DLM is unable to accurately depict the evolution of transient solutions in both amplitudes and phases, as compared to
the 5SDLM, but the trend mode of its transient solution is comparable to that of the SDLM. The trend mode is determined as the non-oscillatory component of the
solution using the parallel version of the ensemble Empirical Model Decomposition (EMD) algorithm. In addition, with the revised 3DLM, the dependence of the
equilibrium-state solution on the implementation of the parameterized term suggests the importance of emulating the nonlinear (horizontal and vertical) advection
of temperature into the parameterized term. Characteristics of the solution (such as overestimated stability, lack of detailed evolution, and a comparable trend mode)
also appear in a different revised 3DLM with parameterized terms using the 6DLIM.

The 3DLM was derived from governing equations for 2D
Rayleigh-Benard convection, which have two nonlinear advection
terms, J(y,V'w)and J(¥,0), here, ¢ is the streamfunction, and
0 is the temperature perturbation. However, only the impact of
the latter is included in the 3DLM. In other words, nonlinearity in
the 3DLM involves only nonlinear advection of temperature. The
nonlinear interaction of two wave modes, which is expressed by the
Jacobian term, can generate or impact a third wave mode through
a downscale (or upscale) transfer process. The third wave mode can
provide feedback to the incipient wave mode(s) via its subsequent
upscale (or downscale) transfer process. Downscale and upscale
transfer processes associated with the third mode form a nonlinear
feedback loop that can be continuously extended when new modes

1. Introduction

In his pioneering modeling paper published in 1963, Professor
Edwards Lorenz of MIT illustrated the sensitive dependence of
numerical solutions on initial conditions (ICs) using a very elegant
set of nonlinear ordinary differential equations [1]. The numerical
phenomenon of a solution’s dependance on ICs, appearing as the
normalized Rayleigh parameter (r) exceeds a critical value of r, is now
known as chaos or a butterfly effect of the first kind [2]. The equations
are referred to as the (three-dimensional) Lorenz model (3DLM).
Since the theory’s introduction by Lorenz, researchers have suggested
that the source of chaos in the 3DLM is nonlinearity [3-6]. Various
researchers have inferred that (1) small-scale processes can have a

huge impact on large-scale processes (say, leading to the generation
of a tornado) and (2) increased degrees of nonlinearity may further
increase the degree of chaotic behavior. In regards to the generation
of large-scale systems (e.g., a tornado), the process is referred to as a
butterfly effect of the second kind [2], while the sensitive dependence
of numerical solutions on ICs is called a butterfly effect of the first kind.
However, Pielke [4] indicated that the inferred statements may not be
accurate, and research shows that nonlinear feedbacks associated with
newly added modes can be positive or negative [2,7]. In other words,
nonlinear feedbacks associated with small-scale modes can either
stabilize or destabilize solutions, consistent with view of Lorenz [8] on
the role of small-scale processes: If the flap of a butterfly’s wings can be
instrumental in generating a tornado, it can equally well be instrumental
in preventing a tornado.
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are continuously generated. Appendix B of Shen [2] summarizes the
successive downscale and upscale transfer processes via the Jacobian
term, J(¥,0). Related discussions suggest that an ideal numerical
model should include an infinite number of Fourier modes. However,
practically, all available numerical models have a finite number of
modes. Thus the extension of their nonlinear feedback loop is finite
(and incomplete). As a result, mode truncation may impact the degree
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of nonlinearity and related feedback. Since chaos does appear to be
the result of the inclusion of nonlinearity with a limited number of
Fourier modes (i.e., a limited degree of nonlinearity), it is important
to understand the impact of the increased degrees of nonlinearity in
thermodynamic processes (i.e., J(y,6)) on a solution’s stability. To
illustrate this process, the approach, as presented here, was to derive
and examine the five- and six-dimensional Lorenz models (5DLM
and 6DLM). Newly introduced “nonlinear thermodynamic processes”
involve the nonlinear interaction of existing modes (in the 3DLM) and
new modes that are associated with either dissipation terms or a heating
term. While high-dimensional Lorenz models have been derived and
examined in order to understand the impact of mode truncations on
a solution’s stability over a period of several years [9-12], efforts have
been made to discuss (i) the extension of the nonlinear feedback loop
in the 5D or 6DLM; (ii) the role of the nonlinear feedback in stabilizing
or destabilizing solutions; (iii) clarifications of the first and second kind
of butterfly effect; and (iv) the feasibility of parameterizing negative (or
positive) feedbacks into a revised 3DLM with the aim of improving
system stability without the need to use higher dimensional LMs, and
while understanding how parameterization may change time-varying
solutions and the equilibrium state solution.

With the original 3DLM and 5DLM, the impact of improved
nonlinear advection (associated with additional high-wavenumber
modes) on solution stability was previously discussed [2]. Then, the
5DLM is viewed as the 3DLM with the nonlinear feedback explicitly
resolved by two additional high wavenumber modes. The feedback
includes nonlinear advection as well as dissipative terms associated
with the new modes. In this work, an outline of how the process can
be emulated in the 3D Lorenz model is provided. In Sections 2.1 and
2.2, discussion regarding the procedures required for parameterization
of the nonlinear feedback using the 5DLM or 6DLM is provided.
Mathematical analysis for the dissipative terms is provided in Section
2.3 and numerical methods for calculations of the solutions and
ensemble Lyapunov exponents are discussed in Section 2.4. Results are
presented in Section 3, followed by concluding remarks.

2 Revised Lorenz Models and Numerical Approaches

The revised three-dimensional Lorenz Model (3DLM) includes two
general parameterization terms (e.g., Q, and Q,), as follows:

X

—=—0X+0Y, (1)
dr
Y xzerx-v+0, @)
dr
d—Z:XY—bZ+Q2, (3)
dr

here, 0 and r are the Prandtl number the normalized Rayleigh number,
respectively [1,2]. Note that 7 is also known as the heating parameter.
(X,Y,Z)represent the amplitudes of the solutions resolved by the
Fourier modes of Lorenz [1]. In this study, the three modes in the
3DLM are referred to as primary modes. Q, and Q, represent the
nonlinear feedback from small-scale processes, derived analytically
from a higher-dimensional Lorenz model, e.g., 5DLM or 6DLM.
As illustrated in Shen [2], nonlinear terms of the 3DLM, as well as
5DLM and 6DLM, come solely from the advection of temperature
perturbations. Thus, only including additional nonlinear terms in Egs.
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2 and 3 is justifiable. Detailed procedures regarding the choices for Q,
and Q, using the 5DLM or 6DLM are provided below.

2.1 3DLM with parameterization using the 5DLM (3DLM-
P5d)

In the following, determination of Q, and Q, using the 5DLM,
which consists of the following equations [2], is discussed:

d—Xz—aX+aY, 4
dr
d—Y:—XZ+rX—Y, (5)
dr
d—ZzXY—XYl—bZ, 6)
dr
M _ Xz 2x7,-d ¥ )
dr
% =2XY, -4bZ,, (8)
dr

here, both band d, are constants (b=8/3 and d =19/3) and are defined in
Shen (2014) and Shen (2015) [2,7]. As compared to Yand Z, Y, and Z,

represent the amplitudes of temperature perturbation modes that are
resolved using two additional Fourier modes with high wave-numbers
[2,7]. The two modes are referred to as secondary temperature modes.
As defined in the previous studies [2,7], the term “feedback” refers to
the nonlinear processes that involve the secondary modes (i.e., Y, and/
or Z,). Therefore, Egs. (4-6) in the 5DLM can be viewed as a 3DLM
with the feedback processes (i.e., XY) that result from the secondary
modes. Physically, the term XY, represents the nonlinear advection of
secondary temperature mode that provides feedback to the primary
temperature mode.

By comparing the revised 3DLM (i.e., Eqs. 1-3) with Eqgs. (4-6) of
5DLM, Q,=0and Q,=XY are first obtained. In Appendix A of Shen [2],
XY, was shown to be responsible for conversion of domain averaged
potential energy between Z and Z, mode. Thus the negative nonlinear
feedback of XY, is also associated with the Z,. Next, it is beneficial to
express the secondary mode (i.e., Y,) in terms of the primary modes (i.e.,
X,Y,Z). To achieve this, Y is solved by assuming a steady-state solution
for secondary modes in Eqs. (7-8), i.e., dY,/dt=0 and dZ, /dr =0, as
follows:

Y :bi 9)
' X?+bd,’
-bX*Z
=—XY = ——, (10)
©, ' X’ +bd,

In Eq. (10), the nonlinear advection of secondary temperature
mode is represented by the primary modes (X,Y,Z). With Q =0 and Q,
in Eq. 10, the revised 3DLM (Egs. 1-3) is referred to as the 3DLM-P5d
or 3DLMP5d. Note that Eq. (10) can be simplified, as follows: (1) When
X is small and Z is positive, Q,=-qX*, where g is a tunable parameter.
This type of parameterization with ¢ ~0.17-0.19 was first included in
a revised 3DLM by Shen [2], who indicated that a larger . is required
for the onset of chaos. (2) When X is large (i.e.,, X’>>bd), Q,=-bZ
and is the same as the dissipative term (-bZ) in Eq. (6). Although it is
challenging to linearize the revised 3DLM that includes a complicated
nonlinear Q, term (i.e. Eq. 10), the two simplified cases make it feasible
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to linearize Eq. (3) and to, thus, calculate Lyapunov vectors using the
Gram-Schmidt reorthonormalization procedure discussed in Section
2.4. Additionally, these two simplified versions can be used to illustrate
how changes in parameterizations may lead to different equilibrium-
state solutions, as discussed below.

In Appendix A of Shen [2], domain-averaged kinetic energy (KE)
and potential energy ( PE ) are written, as follows:

KE-Sx2 (a
2
PE=-CyoZ > (12)
2
where C, = ;rz;cz(“'ia)ﬁ By multiplying Eqs. 1 and 2 by X and -0,
a

respectively, one obtains:

XZ—X=—0X2+O'XY, (13)
T
—O'Z—ZZ—O'XY+O'bZ—O'Q2- (14)
T
Adding the two questions above yields:
de+‘2ﬁ=C3a(—X2+bZ—Q2)- (15)
T T

In Eq. (15), the nonlinear term (XY) associated with the primary
modes is implicit and is internally responsible for energy conversion,
while the nonlinear feedback term involving the secondary modes is
represented by —(Q,. The three terms on the right hand side represent

energy sinks (or sources), @N_zgﬁ and dPE ~_bPE . As

dr dr

discussed, -Q, <bZ in Eq. (10), and -0, plays a role similar to bZ,
which adds negative potential energy into the system (Eq. 12) and
provides negative thermodynamic feedback. A steady-state solution is
reached when the right hand side of Eq. (15) equals zero. The steady-
state solution with @, =0 is the critical point solution of the 3DLM
(ie, X.= i\/i ). With the general form of O, in Eq. 10, a steady-state
solution appears when the primary modes (.X,Y,Z) are replaced by
the analytical solutions of the critical points in the 5DLM (Egs. 19a-c of
Shen, 2014), written, as follows:

ZC =r—10 (163.)
' 2 2
Zlc :—diﬂ, (16b)
4
X, =Y, =+b(Z,+2Z,) - (16¢)

Eq. (16) suggests that steady-state solutions in the 3DLMP5d are
the same as those of the 5DLM. Since parameterization of nonlinear
feedback is based on the assumption of steady-state solutions for the
secondary modes in the 5DLM, the result is anticipated. As discussed
earlier, the parameterized term (0, ) is dominated by —gx?* with g<1

when X is relatively small and is dominated by —pZ when X is relatively
large. The two simplified cases lead to the following different steady-state

solutions: 1) X, =+,/bZ /(1-¢q) and 2) X, =% /2bZC, respectively.
Note that Z has the same form as Eq. (16a) for the 3DLM, the revised
3DLMs, and the 5DLM. Therefore, by choosing a different Q,, we can
change the equilibrium-state solutions for the revised 3DLM (Egs. 1-3)
(e.g., from the fixed-point solutions of the 3DLM, when Q,=0,to fixed-
point solutions of the 5SDLM, when Q, is described by Eq. 10). Although
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proper selection of g (=1/2) in the the first simplified case may lead to
the same equilibrium-state solutions as those of the second simplified
case, their time-varying solutions are still different. In fact, when X is
small as compared to bd in Eq. (10), this condition poses an upper
bound on r (or g) as aresult of X, = \/bZ(. /(l-q) = \/b(r—l) /(1-¢q) . The
parameterized term (Q,) emulates the nonlinear feedback associated
with the nonlinear advection of temperature and dissipative processes
due to the secondary modes. Thus, any simplifications in Q, indicate
changes in the nonlinear advection and/or dissipation. The above
discussions suggest the dependence for both transient and stead-
state solutions on the detailed implementation of a parameterization,

including nonlinear advection and/or dissipative processes. Further
illustration with numerical results are provided in Figure 4 and
discussed in Section 3.

2.2 3DLM with parameterization using the 6DLM (3DLM-
P6d)

To emulate the nonlinear feedback associated with the secondary
modes, the above approach assumes a steady state solution for the
secondary modes and, thus, represents the secondary modes in terms
of primary modes. To further assure the validity of the approach, a test
is performed with the 6DLM. Incremental changes in the number of
Fourier modes from the 3DLM, to the 5DLM and 6DLM can help trace
the individual and/or collective impact on solution stability. While
the secondary temperature modes (Y, and Z,) of the 5DLM, as well
as the 6DLM, introduce additional nonlinear and dissipative terms,
which, in turn, provide negative nonlinear feedback, the secondary
streamfunction mode (X,) of the 6DLM (Egs. 4-5 of Shen (2015)
[7]) introduces additional nonlinear terms and adds a heating term.
Therefore, these LMs were used to examine the competing impact
between an additional heating term and the negative nonlinear feedback
[7]. Research has indicated the following: 1) negative nonlinear
feedback in association with the secondary temperature modes plays
a dominant role in providing feedback for improving the solution
stability of the 6DLM; 2) the additional heating term in association with
the secondary streamfunction mode may destabilize the solution, but
its impact is much smaller than that of the negative nonlinear feedback.
Thus, the 6DLM has a comparable but slightly smaller 7, (~41.1) for
the onset of chaos, as compared to the 5DLM with 7. =42.9 (Table 1).
The 5DLM and 6DLM collectively suggest different roles for small-
scale processes (i.e., stabilization vs. destabilization).

Following the aforementioned procedures in Section 2.1, the
revised 3DLM (Egs. 1-3) is compared with the 6DLM (e.g., Egs. 8-10 of
Shen, 2015[7]) to obtain the following:

0 =X7Z-2XZ, (17)

0, =-XY, -X7Y- (18)

Using Egs. (11-13) of Shen (2015)[7], steady state solutions for X,
Y, and Z, are solved and and expressed in terms of (X,Y,Z):

v bXZ
1T —
X2+bdo+7d2br’ (19)
Y,
X =d—‘2, (20)
Y, Y
Zl—?lb(X+? . (21)
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Now, both Q, and ©; in Egs. (17-21) are functions of the primary
modes (X,Y,Z). The revised 3DLM (Egs. 1-3) using Egs. (17-21) is
referred to as the 3DLM-P6d or 3DLMP6d. In Section 2.4, we discuss
numerical approaches for the calculation and analysis of solutions in
both 3DLMP5d and 3DLMP6d.

2.3 Dissipation vs. Numerical Smoothing

The above discussions emphasize the role of negative nonlinear
thermodynamic feedback in improving solution stability. The
relationship of the nonlinear feedback to the additional nonlinear
terms (i.e., J(,0)) and the dissipative term (i.e., ¥V>0) was discussed
in Shen (2014) [2]. An important question to be answered is how
these processes may be identified in real world models such as climate
models and/or weather models [13-15]. While it takes a significant
effort to thoroughly address this question, an initial attempt is made in
the following discussion. The nonlinear term, J(y,0), representing the
horizontal and vertical advection of temperature, is commonly included
in numerical models (explicitly or implicitly). While the dissipative
term may be physically interpreted as an eddy dissipative process, it
can be numerically linked to an averaging operator, as discussed below.
For example, the dissipative term V2@ can be simplified, as follows:

2 O(x+Ax,t)+60(x—Ax,t)
Ou x5l 7 —0(x,1)], (22a)
and the rate of change in @ can be approximated by
0, ~ 6’(x,t+AAt2—9(x, t) ' (22b)

Here, Ax and At represent a grid spacing and time interval,
respectively. By choosing At = Ax* / 2k , we have

O(x +Ax,0) +O(x— Ax,1)
2

The above, which is approximated from the linear thermodynamic
equation with the dissipative term (ie, 6, =&0.), qualitatively
suggests that the averaging operator plays a role numerically similar
to the Laplacian operator (Vv?) in contributing to dissipative processes.

O(x,t+At) = (23)

2.4 Numerical approaches

Using the 4th order Runge-Kutta scheme, the original and
revised Lorenz models are integrated forward in time. The value of
the heating parameter, r, is varied, while other parameters, including
o=10, b=8/3,and d, =19/3, are held constant. The dependence
of solution’s stability on ¢ was examined using the 3DLM, 5DLM,
6DLM and a revised 3DLM with O, = -g¢X* and q=0.17 [2,7]. Below,
the ensemble Lyapunov exponents are first discussed then followed by
time-dependent solutions obtained from the 5DLM, 3DLMP5d, and
3DLMP6d. Numerical approaches, as discussed by Shen [2], are also
briefly summarized.

For the time-dependent solutions, the initial conditions are, as
follows:

(X,Y,Z2,X,,Y,,Z,)=(0,1,0,0,0,0). 29

The dimensionless time interval (A7 ) is 0.0001. The total number
of time steps (N) is 500,000. To quantitatively evaluate whether or
not the system is chaotic, we calculate the Lyapunov exponent (LE), a
measure of the average separation speed of nearby trajectories on the
critical point [16-25]. In Shen [2], the two methods implemented and
tested are the trajectory separation (TS) method [23] and the Gram-
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Schmidt reorthonormalization (GSR) procedure [17,21]. Using given
initial conditions (ICs) and a set of parameters in the LMs, the TS
scheme calculates the largest LE while the GSR scheme produces “n”
LEs. Here, “n” is the dimension of the 5D or 6DLM. Obtaining the
n LEs using the GSR scheme requires the derivation of the so-called
variational equation. Calculations are conducted with A7 =0.0001
and N =10,000,000, yielding 7 =1,000. To minimize dependence
on the ICs, 10,000 ensemble (En=10,000) runs with the same
model configurations but different ICs are performed, and an ensemble
averaged LE (eLE) is obtained from the average of the 10,000 LEs. A
large N and E, are used to understand the long-term average behavior
of the solutions in the LMs. The eLEs calculations of the 3DLM, 5DLM
and 6DLM, obtained using the two methods above, were previously
discussed and compared in Shen [2,7]. A calculation of the Kaplana and
Yorke fractal dimension [26] using the (three) leading eLEs from the
GSR method was provided in Appendix A of Shen [7], as an additional
verification. The results of the 3DLM, obtained using both methods,
are presented for a comparison. Only the TS method is applied in the
3DLMP5d and 3DLMP6d because both models introduce complicated
nonlinear terms, making it difficult to derive the variational equation
for the GSR scheme.

For stable solutions, as shown by numerical solutions to be
discussed in Section 3, the 3DLMP5d and 3DLMP6d produce the same
steady-state solutions as those in the 5DLM and 6DLM, respectively.
The result is expected due to the assumption of the parameterization,
as discussed in Sections 2.1 and 2.2. As nonlinear feedback processes
are emulated with diagnostic equations in the revised 3DLMs and as
nonlinear feedback processes are resolved by prognostic equations in
the 5DLM and 6DLM, the revised 3DLMs are unable to accurately depict
the evolution of transient solutions in both phases and amplitudes
prior to the steady state, as compared to solutions in the 5DLM or
6DLM. Therefore, using a different methodology for comparing the
time-varying solutions of the revised 3DLMs and the corresponding
high-dimensional LMs is important.

A common practice is to compare the time averaged quantities of
two fields in place of a direct point-to-point comparison. However, it
is not trivial to determine a time scale for averaging, in particular when
a solution evolves at multiple scales. Therefore, to achieve the goal
of comparing solutions from different LMs, the trend mode, defined
as the non-oscillatory component of the solution, is calculated and
compared. The core technology for this calculation is the empirical
mode decomposition (EMD) [27,28]. The EMD, as first developed by
Huang et al. [27], extracts a finite number (N) of the oscillatory intrinsic
mode functions (IMFs) from the local extrema of the data. The residual,
which represents the difference between the raw data and a sum of N
IMFs, is called the trend mode, which is non-oscillatory. The ensemble
EMD (EEMD) method was proposed to effectively resolve the issue of
mode mixing in the EMD [28]. Although the method is promising, it
requires tremendous computing resources, as computational resources
are linearly proportional to the number of ensemble trials. To reduce
the time to obtain solutions, we have developed a parallel version of
EEMD (PEEMD) with a three-level parallelism using message-passing
interface (MPI) tasks for the first two levels and with OpenMP threads
in the third level [29-31]. The PEEMD leads to a parallel speedup of
720 using 200 eight-core processors, and is used to calculate the trend
modes in Figure 4c.

3 Numerical Results

Figure 1 provides ensemble Lyapunov exponents (eLEs) as a
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Figure 1. The largest ensemble-averaged Lyapunov Exponents (eLEs) as a function of the forcing parameter, r, in various LMs. The eLEs of the 3DLM with Ar=1 using different numerical
schemes, including the TS scheme (pink) and the GSR procedure (red circles). The black, blue, orange, and green lines represent the eLEs of the SDLM, 6DLM, 3DLMP5d, and 3DLMP6d,
respectively. The appearance of chaotic solutions is indicated by positive eLEs. Note that the theoretical critical value of r for the onset of chaos in the original 3DLM is 24.74.

Table 1. A list of numerical experiments for various Lorenz models. Column “Parameterizations” indicate the parameterized Q, and Q, terms in the “Equations”. The r_ and r', are
determined based on the eLEs analyses and the linear stability analysis, respectively. The solutions in Figure 2 are rescaled using the factors listed in “Scaling factors”. *For the 3DLM, the

ensemble averaged LE is 1.2x1072 at r=23.7, and becomes 0.26 at = 24.

Case IDs Equations Parameterizations r, v, Scaling factors
3DLM Eqgs. (1-3) Q1=Q2=0 23.7* 24.74 Eq. (21) of Shen (2014)
SDLM Egs. (4-8) N/A 429 45.94 Eq. (19) of Shen (2014)
6DLM Egs. (8-13) of Shen (2015) N/A 41.1 N/A same

3DLM-P5d Eqgs. (1-3) Q1 =0and Q2 in Eq. (10) 52.1 N/A same
3DLM-P6d Eqgs. (1-3) Q1 and Q2 in Egs. (17-21) 51.4 N/A same

function of the normalized Rayleigh parameter (r) for the 3DLM,
5DLM, and revised 3DLMs (i.e., 3DLMP5d and 3DLMP6d). Table 1
summaries the critical value (r) for the onset of chaos in these models.
As first indicated in Shen [2], the 5DLM requires a larger r for the
onset of chaos than the 3DLM. The critical value (r) of the 5DLM is
42.9 while the r_of the 3DLM is 24.74. It was shown that the negative
nonlinear feedback via the XY, term can help suppress chaotic
responses. X7, is present in the 5DLM but not in the 3DLM. Since
the 3DLMP5d includes the impact of X7Y] by assuming a steady-state
solution for ¥, and Z, in Egs. (7-8), the critical value (r) is expected to
be comparable to that of the 5DLM and larger than that of the 3DLM,
as shown in Figure 1 and Table 1. Interestingly, the r,_ of the 3DLMP5d
is 52.1, which is larger than that of the 5DLM. The result suggests that
the solution of 3DLMP5d is less chaotic than that of the 5DLM, and
that the transient evolution of small-scale processes by the secondary
modes, which appear associated with nonzero dY,/dr and dZ,/dr
in the 5DLM, may destabilize the solution of the 5DLM, as further
discussed using Figure 4.

The 6DLM was derived to illustrate the competing impact of an
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additional heating term and negative nonlinear feedback [7]. It was
shown that the negative nonlinear feedback plays a dominant role in
providing feedback, and that the 6DLM has a comparable but slightly
smaller r_ (41.1) as compared to the 5DLM. The negative nonlinear
feedback and the impact of an additional heating term in the 6DLM
are emulated in the 3DLMP6d using steady-state solutions for the
secondary modes. Therefore, the 3DLMP6d with two parameterized
terms is used to ensure the validity of the nonlinear thermodynamic
parameterization. In Figure 1 and Table 1, the r, of the 3DLMP6d
is 51.4, which is comparable, but slightly smaller, than that of the
3DLMP5d (r=52.1). Similarly, the 6DLM has a smaller _ than that
of the 5DLM. Figure 2 displays Y-Z plots with r=35 from the 3DLM,
5DLM, 3DLMP5d, and 3DLMP6d, indicating a chaotic solution for the
3DLM but stable solutions for the rest of the LMs.

To illustrate how the revised 3DLMs, as well as the 5DLM, reach
a steady-state solution with r=35, we analyze the terms on the right
hand side of Eq. (6), including XY, bZ, and XY,. Figure 3 indicates that
the first two terms are balanced with the XY, in order to have a steady-
state solution. When the feedback of XY L is added into the 3DLMP5d,
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Figure 2. (Y, Z) plots with » = 35 in the 3DLM (a), SDLM (b), 3DLMP5d (c), and 3DLMP6d (d). Panel (a) shows the Lorenz strange attractor for the 3DLM. All of the solutions are
normalized by the critical points of either the 3DLM or 5SDLM, namely, Eq. (21) of Shen (2014) for the 3DLM; and Eq. (19) of Shen (2014) for the SDLM, 3DLMP5d, and 3DLMP6d.

solutions for the XY and bZ (Figure 3b) are comparable to those of
the 5DLM, indicating that XY and bZ are balanced with Q, in the
3DLMP5d. The corresponding solutions of the 3DLMP6 (Figure 3c)
are also comparable to those of the 5DLM and 3DLMPS5, indicating the
validity of the approach in determining and emulating the nonlinear
feedback using the 6DLM.

A more detailed comparison is provided in Figure 4 where the
transient solutions for r=35 and r=40 from the 5DLM, 3DLMP5
and 3DLMP6 are examined. As indicated in panels (a)-(b), all of
the solutions eventually become steady, while the solution of the
5DLM displays a smaller decay rate. In the zoomed-in view (Figure
4c), the oscillatory solution of 5DLM displays larger amplitudes as
compared to those of the 3DLMP5 and 3DLMP6. A comparison of
the solutions obtained from the 3DLMP5d and 3DLMPéd indicates
that the latter, with an additional term (i.e., X,), produces a solution
with a comparable amplitude but a different phase, as compared to the
former solution. The result is consistent with that of Shen [7] in that
the positive feedback associated with the secondary streamfunction
mode is small as compared to the negative feedback largely associated
with the secondary temperature modes. To compare the evolution of
different solutions, Figure 4c displays the trend mode of the solutions
at the early stage (i.e., 0<7 <5). While transient solutions from the
revised 3DLMs with parameterizations (3DLMP5 and 3DLMP6)
produce large differences in both phases and amplitudes, their trend
modes are very close to that of the 5SDLM. The result implies that the
revised 3DLMs with parameterizations, which are emulated from the
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feedback of secondary modes, can produce comparable time averaged
solutions as compared to the 5DLM or 6DLM, and lead to the same
steady-state solutions when r is smaller than the r_ of the 5DLM (or
6DLM).

The above discussions demonstrate that nonlinear feedback (i.e.,
XY)) in the 5DLM can be analytically expressed in terms of original
Fourier modes within the 3DLM, and that feedbacks can be emulated
by introducing an additional term (i.e, 0,=0,(X,Y,Z)) into the
3DLM. The term, which emulates the collective impact of the horizontal
advection of temperature perturbation and dissipations associated with
the high-wavenumber modes, can be analytically determined by solving
for a steady-state solution for the high-wavenumber modes within the
high-dimensional LM (e.g., 5DLM), as discussed in section 2.1. Using
this approach, the revised 3DLM is viewed as the 3DLM with nonlinear
feedback parameterized by the additional term. This approach is
referred to as the parameterization of nonlinear thermodynamic
feedback.

4 Concluding Remarks

The sensitive dependence of numerical solutions on initial
conditions (ICs), appearing in the 3DLM when the normalized
Rayleigh parameter (r) exceeds a critical value (r, ~24.74), is known
as chaos or butterfly effect of the first kind. Although chaotic solutions
are associated with the inclusion of nonlinearity (as indicated in a
comparison between the nonlinear 3DLM and linearized 3DLM),
increased degrees of nonlinearity in higher-dimensional Lorenz
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Figure 3. Forcing terms of dZ/dr, which are Eq. (6) for the 5SDLM and Eq. (3) for the revised 3DLM with different parameterizations (i.e., 3DLMP5d and 3DLMP6d). Panels (a-c)
show results for » = 35 from the SDLM, 3DLMP5d, and 3DLMP6d, respectively. The black and orange lines represent the XY and bZ, respectively, while the blue line represents the X
Y,. In the SDLM, as compared to the original 3DLM, the nonlinear feedback term XY, is included to reach a steady state. In the 3DLMP5d and 3DLMP6d, XY and bZ, which are balanced

with O, and Q, , are comparable to those in the SDLM.

models can improve system stability, since both the 5DLM and 6DLM
require a larger r for the onset of chaos [2,7] (Table 1). In this study, we
proposed the revised Lorenz model with only one parameterized term
(i.e., 3DLMP5d) that can produce more stable solutions as compared
to the 3DLM. The new term is added to emulate the nonlinear
thermodynamic feedback that was first identified in the 5DLM.
By analyzing the nonlinear term, J(y,0), using five modes (for the
5DLM), the negative nonlinear feedback of the secondary modes can
be mathematically represented by the XY, term in Eq. (6). Using the
term XY, we demonstrated how to incorporate the negative nonlinear
feedback into the revised 3DLM without using additional prognostic
equations, based on the following: (1) We added a parameterized term
Q,, which is equal to XY, into a revised 3DLM. (2) We obtained steady-
state solutions for the secondary modes (e.g., Y, and Z, in the 5DLM)
and expressed Y, in terms of the primary modes (X,Y,Z). Therefore,
the nonlinear feedback processes are emulated using diagnostic
equations in the revised 3DLMP5d, while they are explicitly resolved
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by prognostic equations in the 5DLM. A different simplification of the
parameterized Q, was found to lead to a different equilibrium state
solution, indicating the dependence of the equilibrium state solution
on the changes in nonlinear advection associated with the secondary or
high-wavenumber modes. For example, the critical point X_ in the revised

3DLM using a different Q, can be +\/bZ, , £\/bZ, /(1-q), £/2bZ_,
or £,/b(Z, +2Z,,) when Q,equals0, —¢X >, —bZ ,or -bX’Z / (X’ +bd,)
(Eq. 10), respectively.

When the 6DLM is used to emulate the nonlinear feedback, two
parameterized terms are added to a revised 3DLM using similar
procedures, as discussed in Section 2.2. The revised 3DLM, with the
parameterized term(s) that is (are) emulated using the 5DLM (6DLM),
is referred as to the 3DLMP5d (3DLMP6d). Table 1 summarizes critical
values for the onset of chaos in the 3DLMP5d, 3DLMPé6d, 3DLM,
5DLM, and 6DLM. For chaotic solutions, the r_of the 3DLMP5d is
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Figure 4. Time evolution of X for the SDLM, 3DLMP5d, and 3DLMP6d. Panels (a-b) display solutions for » = 35 and r = 40, respectively, during the period of 7 = 0-25. Panel (c) displays
a zoomed-in view of solutions during the period of 7= 10-15. Black, orange, and green lines represent results from the SDLM, 3DLMP5d, and 3DLMP6d, respectively. In panel (d), color
lines display the trend modes for the solutions during the period of 7 = 0-5 from the corresponding LMs, each of which is calculated by removing oscillatory components from the solutions
in panel (a). The blue line in panel (d) represents the solution of X from the SDLM, as a reference.

~ 52.1, which is larger than that of the 3DLM (7, ~ 24.74 ). The value
is comparable to but larger than the r, of the corresponding 5DLM
(~42.9). Similar characteristics are observed when comparing the
3DLMP6d and 6DLM, whichyield r values of 51.4 and 41.1, respectively.
The above features suggest that the stability of the 3DMLP5d
(3DLMP6d) is overestimated between 43<r <52 (41.1<r<51), as
compared to the 5DLM (or 6DLM). For stable solutions, the revised
3DLM produces the same steady-state (equilibrium-state) solutions as
those in the 5DLM (or 6DLM) when parameters are set to be the same
in the models (e.g., » = 35 ). Although the revised 3DLM (3DLMP5d or
3DLMP6d) is unable to accurately represent the evolution of transient
solutions in both amplitudes and phases, as compared to the 5DLM,
the trend mode of its transient solution is comparable to that of the
5DLM. The trend mode is determined using the newly developed
parallel ensemble empirical mode decomposition (PEEMD) method.
The characteristics of solutions such as overestimated stability, lack of
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detailed evolution, and a comparable trend mode are often found in the
comparisons of coarse-resolution climate model and fine-resolution
climate (or weather) model simulations.

This study and previous studies [2,7] have discussed the role of
negative nonlinear thermodynamic feedback in improving solution
stability and showed its relationship to the additional nonlinear terms
(i.e., J(y,0)) and the dissipative term (i.e., ¥V>6 ). A nonlinear feedback
loop consists of a pair of downscale and upscale transfer processes via
the Jacobian term[2], and can be continuously extended as long as
new modes can be continuously generated. The extended nonlinear
feedback loop may further stabilize or destabilize system solutions.
The mathematical analysis provided in section 2.3 suggests that an
averaging operator may contribute to dissipative processes, which play
a role numerically similar to the Laplacian operator (Vv?). As nonlinear
advection terms and averaging operators are often included in climate
models, we hypothesize that the nonlinear feedback of numerical
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averaging/smoothing may suppress chaotic responses, leading to
more stable solutions. This hypothesis will be examined using higher-
dimensional Lorenz models and climate/weather models with the TS
method in a future study. As numerical averaging may impact the phase
and amplitude of transient solutions, posing a challenge for verifying
time-varying numerical solutions against observations (or, comparing
the transient solution obtained from a low- and high-dimensional
models), an alternative method such as the PEEMD for comparing
their trend modes is required. Detailed analyses and comparisons of
the different Lorenz models and their application to climate model
simulations are currently being planned.
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