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Abstract
Over 50 years ago, Professor Edwards Lorenz of MIT illustrated the sensitive dependence of numerical solutions on initial conditions (ICs), known as chaos or a 
butterfly effect of the first kind. The equations he used have been referred to as the three-dimensional Lorenz model (3DLM). While the 3DLM has been extensively 
examined to illustrate the role of nonlinearity in producing chaos, higher-dimensional Lorenz models have been studied in order to understand the impact of 
increased degrees of nonlinearity on system stability. Compared to the 3DLM, the 5D or 6D Lorenz model (5DLM or 6DLM) requires a larger normalized Rayleigh 
parameter (r) for the onset of chaos (e.g., Shen, 2014; 2015). Mathematical analysis suggests that negative nonlinear feedback associated with additional small-scale 
modes in the 5D or 6DLM can effectively stabilize solutions. Here, to aid understanding regarding whether nonlinear feedback can be incorporated with one or 
two additional (parameterized) terms, a revised 3DLM is proposed for emulating the negative nonlinear feedback resolved by the 5DLM. For chaotic solutions, the 
critical value of the normalized Rayleigh parameter (rc) in the revised 3DLM (~52.1) is larger than that of the 3DLM (rc~24.74); and is comparable to but larger 
than the rc of the corresponding 5DLM (~42.9). The result suggests that the stability of the revised 3DLM is overestimated between 43<r<52 as compared to the 
5DLM. For stable solutions, the revised 3DLM produces the same steady-state (equilibrium-state) solutions as those in the 5DLM, when parameters are kept the 
same in both models (e.g., r=35). The revised 3DLM is unable to accurately depict the evolution of transient solutions in both amplitudes and phases, as compared to 
the 5DLM, but the trend mode of its transient solution is comparable to that of the 5DLM. The trend mode is determined as the non-oscillatory component of the 
solution using the parallel version of the ensemble Empirical Model Decomposition (EMD) algorithm. In addition, with the revised 3DLM, the dependence of the 
equilibrium-state solution on the implementation of the parameterized term suggests the importance of emulating the nonlinear (horizontal and vertical) advection 
of temperature into the parameterized term. Characteristics of the solution (such as overestimated stability, lack of detailed evolution, and a comparable trend mode) 
also appear in a different revised 3DLM with parameterized terms using the 6DLM.
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1. Introduction
In his pioneering modeling paper published in 1963, Professor 

Edwards Lorenz of MIT illustrated the sensitive dependence of 
numerical solutions on initial conditions (ICs) using a very elegant 
set of nonlinear ordinary differential equations [1]. The numerical 
phenomenon of a solution’s dependance on ICs, appearing as the 
normalized Rayleigh parameter (r) exceeds a critical value of rc, is now 
known as chaos or a butterfly effect of the first kind [2]. The equations 
are referred to as the (three-dimensional) Lorenz model (3DLM). 
Since the theory’s introduction by Lorenz, researchers have suggested 
that the source of chaos in the 3DLM is nonlinearity [3-6]. Various 
researchers have inferred that (1) small-scale processes can have a 
huge impact on large-scale processes (say, leading to the generation 
of a tornado) and (2) increased degrees of nonlinearity may further 
increase the degree of chaotic behavior. In regards to the generation 
of large-scale systems (e.g., a tornado), the process is referred to as a 
butterfly effect of the second kind [2], while the sensitive dependence 
of numerical solutions on ICs is called a butterfly effect of the first kind. 
However, Pielke [4] indicated that the inferred statements may not be 
accurate, and research shows that nonlinear feedbacks associated with 
newly added modes can be positive or negative [2,7]. In other words, 
nonlinear feedbacks associated with small-scale modes can either 
stabilize or destabilize solutions, consistent with view of Lorenz [8] on 
the role of small-scale processes: If the flap of a butterfly’s wings can be 
instrumental in generating a tornado, it can equally well be instrumental 
in preventing a tornado. 

The 3DLM was derived from governing equations for 2D 
Rayleigh-Benard convection, which have two nonlinear advection 
terms, 2( , )J ψ ψ∇ and ( , )J ψ θ , here, ψ is the streamfunction, and 
θ is the temperature perturbation. However, only the impact of 
the latter is included in the 3DLM. In other words, nonlinearity in 
the 3DLM involves only nonlinear advection of temperature. The 
nonlinear interaction of two wave modes, which is expressed by the 
Jacobian term, can generate or impact a third wave mode through 
a downscale (or upscale) transfer process. The third wave mode can 
provide feedback to the incipient wave mode(s) via its subsequent 
upscale (or downscale) transfer process. Downscale and upscale 
transfer processes associated with the third mode form a nonlinear 
feedback loop that can be continuously extended when new modes 
are continuously generated. Appendix B of Shen [2] summarizes the 
successive downscale and upscale transfer processes via the Jacobian 
term, ( , )J ψ θ . Related discussions suggest that an ideal numerical 
model should include an infinite number of Fourier modes. However, 
practically, all available numerical models have a finite number of 
modes. Thus the extension of their nonlinear feedback loop is finite 
(and incomplete). As a result, mode truncation may impact the degree 
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of nonlinearity and related feedback. Since chaos does appear to be 
the result of the inclusion of nonlinearity with a limited number of 
Fourier modes (i.e., a limited degree of nonlinearity), it is important 
to understand the impact of the increased degrees of nonlinearity in 
thermodynamic processes (i.e., ( , ))J ψ θ  on a solution’s stability. To 
illustrate this process, the approach, as presented here, was to derive 
and examine the five- and six-dimensional Lorenz models (5DLM 
and 6DLM). Newly introduced “nonlinear thermodynamic processes” 
involve the nonlinear interaction of existing modes (in the 3DLM) and 
new modes that are associated with either dissipation terms or a heating 
term. While high-dimensional Lorenz models have been derived and 
examined in order to understand the impact of mode truncations on 
a solution’s stability over a period of several years [9-12], efforts have 
been made to discuss (i) the extension of the nonlinear feedback loop 
in the 5D or 6DLM; (ii) the role of the nonlinear feedback in stabilizing 
or destabilizing solutions; (iii) clarifications of the first and second kind 
of butterfly effect; and (iv) the feasibility of parameterizing negative (or 
positive) feedbacks into a revised 3DLM with the aim of improving 
system stability without the need to use higher dimensional LMs, and 
while understanding how parameterization may change time-varying 
solutions and the equilibrium state solution.

With the original 3DLM and 5DLM, the impact of improved 
nonlinear advection (associated with additional high-wavenumber 
modes) on solution stability was previously discussed [2]. Then, the 
5DLM is viewed as the 3DLM with the nonlinear feedback explicitly 
resolved by two additional high wavenumber modes. The feedback 
includes nonlinear advection as well as dissipative terms associated 
with the new modes. In this work, an outline of how the process can 
be emulated in the 3D Lorenz model is provided. In Sections 2.1 and 
2.2, discussion regarding the procedures required for parameterization 
of the nonlinear feedback using the 5DLM or 6DLM is provided. 
Mathematical analysis for the dissipative terms is provided in Section 
2.3 and numerical methods for calculations of the solutions and 
ensemble Lyapunov exponents are discussed in Section 2.4. Results are 
presented in Section 3, followed by concluding remarks.

2  Revised Lorenz Models and Numerical Approaches
The revised three-dimensional Lorenz Model (3DLM) includes two 

general parameterization terms (e.g., Q1 and Q2), as follows:
dX X Y
d

σ σ
τ
= − + ,				                 (1)

1
dY XZ rX Y Q
dτ

= − + − + ,		                                    (2)

2
dZ XY bZ Q
dτ

= − + ,				                 (3)

here, σ and r are the Prandtl number the normalized Rayleigh number, 
respectively [1,2]. Note that r is also known as the heating parameter.
( , , )X Y Z represent the amplitudes of the solutions resolved by the 
Fourier modes of Lorenz [1]. In this study, the three modes in the 
3DLM are referred to as primary modes. Q1 and Q2 represent the 
nonlinear feedback from small-scale processes, derived analytically 
from a higher-dimensional Lorenz model, e.g., 5DLM or 6DLM. 
As illustrated in Shen [2], nonlinear terms of the 3DLM, as well as 
5DLM and 6DLM, come solely from the advection of temperature 
perturbations. Thus, only including additional nonlinear terms in Eqs. 

2 and 3 is justifiable. Detailed procedures regarding the choices for Q1 
and Q2 using the 5DLM or 6DLM are provided below.

2.1  3DLM with parameterization using the 5DLM (3DLM-
P5d)

In the following, determination of Q1 and Q2 using the 5DLM, 
which consists of the following equations [2], is discussed:  

dX X Y
d

σ σ
τ
= − + ,				                  (4)

dY XZ rX Y
dτ

= − + − ,				                   (5)

1
dZ XY XY bZ
dτ

= − − , 			                                   (6)

1
1 12 o

dY XZ XZ d Y
dτ

= − − , 			                 (7)

1
1 12 4dZ XY bZ

dτ
= − , 				                   (8)

here, both b and d0 are constants (b=8/3 and do=19/3) and are defined in 
Shen (2014) and Shen (2015) [2,7]. As compared to Y and Z, 1Y  and 1Z  
represent the amplitudes of temperature perturbation modes that are 
resolved using two additional Fourier modes with high wave-numbers 
[2,7]. The two modes are referred to as secondary temperature modes. 
As defined in the previous studies [2,7], the term “feedback” refers to 
the nonlinear processes that involve the secondary modes (i.e., Y1 and/
or Z1). Therefore, Eqs. (4-6) in the 5DLM can be viewed as a 3DLM 
with the feedback processes (i.e., XY1) that result from the secondary 
modes. Physically, the term XY1 represents the nonlinear advection of 
secondary temperature mode that provides feedback to the primary 
temperature mode.

By comparing the revised 3DLM (i.e., Eqs. 1-3) with Eqs. (4-6) of 
5DLM, Q1=0 and Q2=XY1 are first obtained. In Appendix A of Shen [2], 
XY1 was shown to be responsible for conversion of domain averaged 
potential energy between Z and Z1 mode. Thus the negative nonlinear 
feedback of XY1 is also associated with the Z1. Next, it is beneficial to 
express the secondary mode (i.e., Y1) in terms of the primary modes (i.e., 
X,Y,Z). To achieve this, Y1 is solved by assuming a steady-state solution 
for secondary modes in Eqs. (7-8), i.e., dY1/dτ=0 and 1 / 0dZ dτ = , as 
follows: 

1 2
o

bXZY
X bd

=
+

, 			                                  (9)

2

2 1 2
o

bX ZQ XY
X bd
−

= − =
+

, 			                (10)

In Eq. (10), the nonlinear advection of secondary temperature 
mode is represented by the primary modes (X,Y,Z).  With Q1=0  and Q2 
in Eq. 10, the revised 3DLM (Eqs. 1-3) is referred to as the 3DLM-P5d 
or 3DLMP5d. Note that Eq. (10) can be simplified, as follows: (1) When 
X is small and Z is positive, Q2=-qX2, where q is a tunable parameter. 
This type of parameterization with ~ 0.17 0.19q −  was first included in 
a revised 3DLM by Shen [2], who indicated that a larger rc is required 
for the onset of chaos. (2) When X is large (i.e., X2>>bdo), Q2=-bZ 
and is the same as the dissipative term (-bZ) in Eq. (6). Although it is 
challenging to linearize the revised 3DLM that includes a complicated 
nonlinear Q2 term (i.e. Eq. 10), the two simplified cases make it feasible 
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to linearize Eq. (3)  and to, thus, calculate Lyapunov vectors using the 
Gram-Schmidt reorthonormalization procedure discussed in Section 
2.4. Additionally, these two simplified versions can be used to illustrate 
how changes in parameterizations may lead to different equilibrium-
state solutions, as discussed below.

In Appendix A of Shen [2], domain-averaged kinetic energy ( 2
3 2 , (11)KE C X=) 

and potential energy ( 3 , (12)PE C Zσ= −) are written, as follows:  

23

2
CKE X= ,					                   (11)

3PE C Zσ= − , 					                    (12)

where 
2

2 2 3
3

1( )aC
a

π κ +
= . By multiplying Eqs. 1 and 2 by X and σ− , 

respectively, one obtains:  

2dXX X XY
d

σ σ
τ
= − + ,			                                 (13)

2
dZ XY bZ Q
d

σ σ σ σ
τ

− = − + − .			                 (14)

Adding the two questions above yields:  

2
3 2( )d KE d PE C X bZ Q

d d
σ

τ τ
+ = − + − .		                                  (15)

 In Eq. (15), the nonlinear term (XY) associated with the primary 
modes is implicit and is internally responsible for energy conversion, 
while the nonlinear feedback term involving the secondary modes is 
represented by 2Q bZ− ∝. The three terms on the right hand side represent 

energy sinks (or sources), ~ 2d KE KE
d

σ
τ

−  and ~d PE bPE
dτ

− . As 

discussed, 
2Q bZ− ∝  in Eq. (10), and 2Q−  plays a role similar to bZ, 

which adds negative potential energy into the system (Eq. 12) and 
provides negative thermodynamic feedback. A steady-state solution is 
reached when the right hand side of Eq. (15) equals zero. The steady-
state solution with 2 0Q =  is the critical point solution of the 3DLM 
(i.e., c cX bZ= ± ). With the general form of 2Q  in Eq. 10, a steady-state 
solution appears when the primary modes ( , ,X Y Z ) are replaced by 
the analytical solutions of the critical points in the 5DLM (Eqs. 19a-c of 
Shen, 2014), written, as follows:  

1, (16 )cZ r a= − ,					                  (16a)

2 2

1

4
4

c
c

d Z
Z d

+
= − ± , 				                (16b)

1( 2 )c c c cX Y b Z Z= = ± + . 			              (16c)

Eq. (16) suggests that steady-state solutions in the 3DLMP5d are 
the same as those of the 5DLM. Since parameterization of nonlinear 
feedback is based on the assumption of steady-state solutions for the 
secondary modes in the 5DLM, the result is anticipated. As discussed 
earlier, the parameterized term ( 2Q ) is dominated by 2qX−  with q<1 
when X is relatively small and is dominated by bZ−  when X is relatively 
large. The two simplified cases lead to the following different steady-state 
solutions: 1) / (1 )c cX bZ q= ± −  and 2) 2c cX bZ= ± , respectively. 
Note that Zc has the same form as Eq. (16a) for the 3DLM, the revised 
3DLMs, and the 5DLM. Therefore, by choosing a different Q2, we can 
change the equilibrium-state solutions for the revised 3DLM (Eqs. 1-3) 
(e.g., from the fixed-point solutions of the 3DLM, when Q2=0, to fixed-
point solutions of the 5DLM, when Q2 is described by Eq. 10). Although 

proper selection of q (=1/2) in the the first simplified case may lead to 
the same equilibrium-state solutions as those of the second simplified 
case, their time-varying solutions are still different. In fact, when X is 
small as compared to bdo in Eq. (10), this condition poses an upper 
bound on r (or q) as a result of / (1 ) ( 1) / (1 )c cX bZ q b r q= − = − − . The 
parameterized term (Q2) emulates the nonlinear feedback associated 
with the nonlinear advection of temperature and dissipative processes 
due to the secondary modes. Thus, any simplifications in Q2 indicate 
changes in the nonlinear advection and/or dissipation. The above 
discussions suggest the dependence for both transient and stead-
state solutions on the detailed implementation of a parameterization, 
including nonlinear advection and/or dissipative processes. Further 
illustration with numerical results are provided in Figure 4 and 
discussed in Section 3.

2.2  3DLM with parameterization using the 6DLM (3DLM-
P6d)

To emulate the nonlinear feedback associated with the secondary 
modes, the above approach assumes a steady state solution for the 
secondary modes and, thus, represents the secondary modes in terms 
of primary modes. To further assure the validity of the approach, a test 
is performed with the 6DLM. Incremental changes in the number of 
Fourier modes from the 3DLM, to the 5DLM and 6DLM can help  trace 
the individual and/or collective impact on solution stability. While 
the secondary temperature modes (Y1 and Z1) of the 5DLM, as well 
as the 6DLM, introduce additional nonlinear and dissipative terms, 
which, in turn, provide negative nonlinear feedback, the secondary 
streamfunction mode (X1) of the 6DLM (Eqs. 4-5 of Shen (2015) 
[7]) introduces additional nonlinear terms and adds a heating term. 
Therefore, these LMs were used to examine the competing impact 
between an additional heating term and the negative nonlinear feedback 
[7]. Research has indicated the following: 1) negative nonlinear 
feedback in association with the secondary temperature modes plays 
a dominant role in providing feedback for improving the solution 
stability of the 6DLM; 2) the additional heating term in association with 
the secondary streamfunction mode may destabilize the solution, but 
its impact is much smaller than that of the negative nonlinear feedback. 
Thus, the 6DLM has a comparable but slightly smaller cr  ( ~ 41.1) for 
the onset of chaos, as compared to the 5DLM with 42.9cr = (Table 1). 
The 5DLM and 6DLM collectively suggest different roles for small-
scale processes (i.e., stabilization vs. destabilization).

Following the aforementioned procedures in Section 2.1, the 
revised 3DLM (Eqs. 1-3) is compared with the 6DLM (e.g., Eqs. 8-10 of 
Shen, 2015[7]) to obtain the following: 

1 1 1 12 , (17)Q X Z X Z= − ,				                (17)

2 1 1 .(18)Q XY X Y= − − .				                (18)

Using Eqs. (11-13) of Shen (2015)[7], steady state solutions for X1, 
Y1 and Z1 are solved and and expressed in terms of ( , ,X Y Z ): 

1
2

2o
o

bXZY XY brX bd
d

=
−

+ +
 , 			                              (19)

1
1 2

o

YX
d

=  ,					                 (20)

1
1 2( )

2 o

Y YZ X
b d

= + .				                   (21)
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Now, both 1Q  and 2Q  in Eqs. (17-21) are functions of the primary 
modes ( , ,X Y Z ). The revised 3DLM (Eqs. 1-3) using Eqs. (17-21) is 
referred to as the 3DLM-P6d or 3DLMP6d. In Section 2.4, we discuss 
numerical approaches for the calculation and analysis of solutions in 
both 3DLMP5d and 3DLMP6d.

2.3 Dissipation vs. Numerical Smoothing

The above discussions emphasize the role of negative nonlinear 
thermodynamic feedback in improving solution stability. The 
relationship of the nonlinear feedback to the additional nonlinear 
terms (i.e., J(ψ,θ)) and the dissipative term (i.e., 2κ θ∇ ) was discussed 
in Shen (2014) [2]. An important question to be answered is how 
these processes may be  identified in real world models such as climate 
models and/or weather models [13-15]. While it takes a significant 
effort to thoroughly address this question, an initial attempt is made in 
the following discussion. The nonlinear term, J(ψ,θ), representing the 
horizontal and vertical advection of temperature, is commonly included 
in numerical models (explicitly or implicitly). While the dissipative 
term may be physically interpreted as an eddy dissipative process, it 
can be numerically linked to an averaging operator, as discussed below. 
For example, the dissipative term 2θ∇  can be simplified, as follows: 

2

2 ( , ) ( , )[ ( , )]
2xx

x x t x x t x t
x

θ θθ θ+ ∆ + −∆
≈ −
∆

,                            (22a)

and the rate of change in θ  can be approximated by 

( , ) ( , )
t

x t t x t
t

θ θθ + ∆ −
≈

∆
 . 			                (22b)

Here, x∆  and ∆t represent a grid spacing and time interval, 
respectively. By choosing 2 / 2t x κ∆ = ∆ , we have 

( , ) ( , )( , )
2

x x t x x tx t t θ θθ + ∆ + −∆
+ ∆ ≈ .                                    (23)

The above, which is approximated from the linear thermodynamic 
equation with the dissipative term (i.e., t xxθ κθ≈ ), qualitatively 
suggests that the averaging operator plays a role numerically similar 
to the Laplacian operator ( 2∇ ) in contributing to dissipative processes.

2.4 Numerical approaches

Using the 4th order Runge-Kutta scheme, the original and 
revised Lorenz models are integrated forward in time. The value of 
the heating parameter, r, is varied, while other parameters, including 

10σ = , 8 / 3b = , and 19 / 3od = , are held constant. The dependence 
of solution’s stability on σ was examined using the 3DLM, 5DLM, 
6DLM and a revised 3DLM with 2

2Q qX= −  and q=0.17 [2,7]. Below, 
the ensemble Lyapunov exponents are first discussed then followed by 
time-dependent solutions obtained from the 5DLM, 3DLMP5d, and 
3DLMP6d. Numerical approaches, as discussed by Shen [2], are also 
briefly summarized.

For the time-dependent solutions, the initial conditions are, as 
follows:  

1 1 1( , , , , , ) (0,1,0,0,0,0).(24)X Y Z X Y Z = .		                (24)

 The dimensionless time interval ( τ∆ ) is 0.0001. The total number 
of time steps (N) is 500,000. To quantitatively evaluate whether or 
not the system is chaotic, we calculate the Lyapunov exponent (LE), a 
measure of the average separation speed of nearby trajectories on the 
critical point [16-25]. In Shen [2], the two methods implemented and 
tested are the trajectory separation (TS) method [23] and the Gram-

Schmidt reorthonormalization (GSR) procedure [17,21]. Using given 
initial conditions (ICs) and a set of parameters in the LMs, the TS 
scheme calculates the largest LE while the GSR scheme produces “n” 
LEs. Here, “n” is the dimension of the 5D or 6DLM. Obtaining the 
n LEs using the GSR scheme requires the derivation of the so-called 
variational equation. Calculations are conducted with 0.0001τ∆ =  
and 10,000,000N = , yielding 1,000τ = . To minimize dependence 
on the ICs, 10,000 ensemble ( 10,000En = ) runs with the same 
model configurations but different ICs are performed, and an ensemble 
averaged LE (eLE) is obtained from the average of the 10,000 LEs. A 
large N and En are used to understand the long-term average behavior 
of the solutions in the LMs. The eLEs calculations of the 3DLM, 5DLM 
and 6DLM, obtained using the two methods above, were previously 
discussed and compared in Shen [2,7]. A calculation of the Kaplana and 
Yorke fractal dimension [26] using the (three) leading eLEs from the 
GSR method was provided in Appendix A of Shen [7], as an additional 
verification. The results of the 3DLM, obtained using both methods, 
are presented for a comparison. Only the TS method is applied in the 
3DLMP5d and 3DLMP6d because both models introduce complicated 
nonlinear terms, making it difficult to derive the variational equation 
for the GSR scheme.

For stable solutions, as shown by numerical solutions to be 
discussed in Section 3, the 3DLMP5d and 3DLMP6d produce the same 
steady-state solutions as those in the 5DLM and 6DLM, respectively. 
The result is expected due to the assumption of the parameterization, 
as discussed in Sections 2.1 and 2.2. As nonlinear feedback processes 
are emulated with diagnostic equations in the revised 3DLMs and as 
nonlinear feedback processes are resolved by prognostic equations in 
the 5DLM and 6DLM, the revised 3DLMs are unable to accurately depict 
the evolution of transient solutions in both phases and amplitudes 
prior to the steady state, as compared to solutions in the 5DLM or 
6DLM. Therefore, using a different methodology for comparing the 
time-varying solutions of the revised 3DLMs and the corresponding 
high-dimensional LMs is important.

A common practice is to compare the time averaged quantities of 
two fields in place of a direct point-to-point comparison. However, it 
is not trivial to determine a time scale for averaging, in particular when 
a solution evolves at multiple scales. Therefore, to achieve the goal 
of comparing solutions from different LMs, the trend mode, defined 
as the non-oscillatory component of the solution, is calculated and 
compared. The core technology for this calculation is the empirical 
mode decomposition (EMD) [27,28]. The EMD, as first developed by 
Huang et al. [27], extracts a finite number (N) of the oscillatory intrinsic 
mode functions (IMFs) from the local extrema of the data. The residual, 
which represents the difference between the raw data and a sum of N 
IMFs, is called the trend mode, which is non-oscillatory. The ensemble 
EMD (EEMD) method was proposed to effectively resolve the issue of 
mode mixing in the EMD [28]. Although the method is promising, it 
requires tremendous computing resources, as computational resources 
are linearly proportional to the number of ensemble trials. To reduce 
the time to obtain solutions, we have developed a parallel version of 
EEMD (PEEMD) with a three-level parallelism using message-passing 
interface (MPI) tasks for the first two levels and with OpenMP threads 
in the third level [29-31]. The PEEMD leads to a parallel speedup of 
720 using 200 eight-core processors, and is used to calculate the trend 
modes in Figure 4c.

3  Numerical Results
Figure 1 provides ensemble Lyapunov exponents (eLEs) as a 
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function of the normalized Rayleigh parameter (r) for the 3DLM, 
5DLM, and revised 3DLMs (i.e., 3DLMP5d and 3DLMP6d). Table 1 
summaries the critical value (rc) for the onset of chaos in these models. 
As first indicated in Shen [2], the 5DLM requires a larger r for the 
onset of chaos than the 3DLM. The critical value (rc) of the 5DLM is 
42.9 while the rc of the 3DLM is 24.74. It was shown that the negative 
nonlinear feedback via the 1XY  term can help suppress chaotic 
responses. 1XY  is present in the 5DLM but not in the 3DLM. Since 
the 3DLMP5d includes the impact of 1XY  by assuming a steady-state 
solution for 1Y  and 1Z  in Eqs. (7-8), the critical value (rc) is expected to 
be comparable to that of the 5DLM and larger than that of the 3DLM, 
as shown in Figure 1 and Table 1. Interestingly, the rc of the 3DLMP5d 
is 52.1, which is larger than that of the 5DLM. The result suggests that 
the solution of 3DLMP5d is less chaotic than that of the 5DLM, and 
that the transient evolution of small-scale processes by the secondary 
modes, which appear associated with nonzero 1 /dY dτ  and 1 /dZ dτ  
in the 5DLM, may destabilize the solution of the 5DLM, as further 
discussed using Figure 4.

The 6DLM was derived to illustrate the competing impact of an 

additional heating term and negative nonlinear feedback [7]. It was 
shown that the negative nonlinear feedback plays a dominant role in 
providing feedback, and that the 6DLM has a comparable but slightly 
smaller rc (41.1) as compared to the 5DLM. The negative nonlinear 
feedback and the impact of an additional heating term in the 6DLM 
are emulated in the 3DLMP6d using steady-state solutions for the 
secondary modes. Therefore, the 3DLMP6d with two parameterized 
terms is used to ensure the validity of the nonlinear thermodynamic 
parameterization. In Figure 1 and Table 1, the rc of the 3DLMP6d 
is 51.4, which is comparable, but slightly smaller, than that of the 
3DLMP5d (rc=52.1). Similarly, the 6DLM has a smaller rc than that 
of the 5DLM. Figure 2 displays Y-Z plots with r=35 from the 3DLM, 
5DLM, 3DLMP5d, and 3DLMP6d, indicating a chaotic solution for the 
3DLM but stable solutions for the rest of the LMs.

To illustrate how the revised 3DLMs, as well as the 5DLM, reach 
a steady-state solution with r=35, we analyze the terms on the right 
hand side of Eq. (6), including XY, bZ, and XY1. Figure 3 indicates that 
the first two terms are balanced with the XY1 in order to have a steady-
state solution. When the feedback of XY1 is added into the 3DLMP5d, 
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Figure 1. The largest ensemble-averaged Lyapunov Exponents (eLEs) as a function of the forcing parameter, r, in various LMs. The eLEs of the 3DLM with ∆r=1 using different numerical 
schemes, including the TS scheme (pink) and the GSR procedure (red circles). The black, blue, orange, and green lines represent the eLEs of the 5DLM, 6DLM, 3DLMP5d, and 3DLMP6d, 
respectively. The appearance of chaotic solutions is indicated by positive eLEs. Note that the theoretical critical value of r for the onset of chaos in the original 3DLM is 24.74.

Case IDs Equations Parameterizations rc rl
c Scaling factors

3DLM Eqs. (1-3) Q1 = Q2 = 0 23.7* 24.74 Eq. (21) of Shen (2014)

5DLM Eqs. (4-8) N/A 42.9 45.94 Eq. (19) of Shen (2014)

6DLM Eqs. (8-13) of Shen (2015) N/A 41.1 N/A same

3DLM-P5d Eqs. (1-3) Q1 = 0 and Q2  in Eq. (10) 52.1 N/A same

3DLM-P6d Eqs. (1-3) Q1  and Q2  in Eqs. (17-21) 51.4 N/A same

Table 1. A list of numerical experiments for various Lorenz models. Column “Parameterizations” indicate the parameterized Q1 and Q2 terms in the “Equations”.  The rc and rl
c are 

determined based on the eLEs analyses and the linear stability analysis, respectively.  The solutions in Figure 2 are rescaled using the factors listed in “Scaling factors”. *For the 3DLM,  the 
ensemble averaged LE is 1.2×10−2  at r = 23.7, and becomes 0.26 at r = 24.
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solutions for the XY and bZ (Figure 3b) are comparable to those of 
the 5DLM, indicating that XY and bZ are balanced with Q2 in the 
3DLMP5d. The corresponding solutions of the 3DLMP6 (Figure 3c) 
are also comparable to those of the 5DLM and 3DLMP5, indicating the 
validity of the approach in determining and emulating the nonlinear 
feedback using the 6DLM.

A more detailed comparison is provided in Figure 4 where the 
transient solutions for r=35 and r=40 from the 5DLM, 3DLMP5 
and 3DLMP6 are examined. As indicated in panels (a)-(b), all of 
the solutions eventually become steady, while the solution of the 
5DLM displays a smaller decay rate. In the zoomed-in view (Figure 
4c), the oscillatory solution of 5DLM displays larger amplitudes as 
compared to those of the 3DLMP5 and 3DLMP6. A comparison of 
the solutions obtained from the 3DLMP5d and 3DLMP6d indicates 
that the latter, with an additional term (i.e., X1), produces a solution 
with a comparable amplitude but a different phase, as compared to the 
former solution. The result is consistent with that of Shen [7] in that 
the positive feedback associated with the secondary streamfunction 
mode is small as compared to the negative feedback largely associated 
with the secondary temperature modes. To compare the evolution of 
different solutions, Figure 4c displays the trend mode of the solutions 
at the early stage (i.e., 0 5τ≤ ≤ ). While transient solutions from the 
revised 3DLMs with parameterizations (3DLMP5 and 3DLMP6) 
produce large differences in both phases and amplitudes, their trend 
modes are very close to that of the 5DLM. The result implies that the 
revised 3DLMs with parameterizations, which are emulated from the 

feedback of secondary modes, can produce comparable time averaged 
solutions as compared to the 5DLM or 6DLM, and lead to the same 
steady-state solutions when r is smaller than the rc of the 5DLM (or 
6DLM).

The above discussions demonstrate that nonlinear feedback (i.e., 
XY1) in the 5DLM can be analytically expressed in terms of original 
Fourier modes within the 3DLM, and that feedbacks can be emulated 
by introducing an additional term (i.e., 2 2 ( , , )Q Q X Y Z= ) into the 
3DLM. The term, which emulates the collective impact of the horizontal 
advection of temperature perturbation and dissipations associated with 
the high-wavenumber modes, can be analytically determined by solving 
for a steady-state solution for the high-wavenumber modes within the 
high-dimensional LM (e.g., 5DLM), as discussed in section 2.1. Using 
this approach, the revised 3DLM is viewed as the 3DLM with nonlinear 
feedback parameterized by the additional term. This approach is 
referred to as the parameterization of nonlinear thermodynamic 
feedback.

4  Concluding Remarks
The sensitive dependence of numerical solutions on initial 

conditions (ICs), appearing in the 3DLM when the normalized 
Rayleigh parameter (r) exceeds a critical value ( ~ 24.74cr ), is known 
as chaos or butterfly effect of the first kind. Although chaotic solutions 
are associated with the inclusion of nonlinearity (as indicated in a 
comparison between the nonlinear 3DLM and linearized 3DLM), 
increased degrees of nonlinearity in higher-dimensional Lorenz 
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Figure 2. (Y, Z) plots with r = 35 in the 3DLM (a), 5DLM (b), 3DLMP5d (c), and 3DLMP6d (d).  Panel (a) shows the Lorenz strange attractor for the 3DLM. All  of the solutions are 
normalized by the critical points of either the 3DLM or 5DLM, namely, Eq. (21) of Shen (2014) for the 3DLM; and Eq. (19) of Shen (2014) for the 5DLM, 3DLMP5d, and 3DLMP6d.
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models can improve system stability, since both the 5DLM and 6DLM 
require a larger r for the onset of chaos [2,7] (Table 1). In this study, we 
proposed the revised Lorenz model with only one parameterized term 
(i.e., 3DLMP5d) that can produce more stable solutions as compared 
to the 3DLM. The new term is added to emulate the nonlinear 
thermodynamic feedback that was first identified in the 5DLM. 
By analyzing the nonlinear term, J(ψ,θ), using five modes (for the 
5DLM), the negative nonlinear feedback of the secondary modes can 
be mathematically represented by the XY1 term in Eq. (6). Using the 
term XY1, we demonstrated how to incorporate the negative nonlinear 
feedback into the revised 3DLM without using additional prognostic 
equations, based on the following: (1) We added a parameterized term 
Q2, which is equal to XY1, into a revised 3DLM. (2) We obtained steady-
state solutions for the secondary modes (e.g., Y1 and Z1 in the 5DLM) 
and expressed Y1 in terms of the primary modes ( , ,X Y Z ). Therefore, 
the nonlinear feedback processes are emulated using diagnostic 
equations in the revised 3DLMP5d, while they are explicitly resolved 

by prognostic equations in the 5DLM. A different simplification of the 
parameterized Q2 was found to lead to a different equilibrium state 
solution, indicating the dependence of the equilibrium state solution 
on  the changes in nonlinear advection associated with the secondary or 
high-wavenumber modes. For example, the critical point Xc in the revised 

3DLM using a different Q2 can be cbZ± , / (1 )cbZ q± − , 2 cbZ± , 

or 1( 2 )c cb Z Z± +  when Q2 equals 0, 2qX− , bZ− , or 2 2/ ( )obX Z X bd− +  
(Eq. 10), respectively.

When the 6DLM is used to emulate the nonlinear feedback, two 
parameterized terms are added to a revised 3DLM using similar 
procedures, as discussed in Section 2.2. The revised 3DLM, with the 
parameterized term(s) that is (are) emulated using the 5DLM (6DLM), 
is referred as to the 3DLMP5d (3DLMP6d). Table 1 summarizes critical 
values for the onset of chaos in the 3DLMP5d, 3DLMP6d, 3DLM, 
5DLM, and 6DLM. For chaotic solutions, the rc of the 3DLMP5d is 

(a) (b)

(c)

Figure  3.  Forcing terms  of dZ/dτ, which are  Eq.  (6) for the  5DLM and Eq.  (3) for the  revised  3DLM with different parameterizations (i.e., 3DLMP5d and 3DLMP6d). Panels (a-c) 
show results for r = 35 from the 5DLM, 3DLMP5d, and 3DLMP6d, respectively.  The black and orange lines represent the XY and bZ, respectively, while the blue line represents the X 
Y1. In the 5DLM, as compared to the original 3DLM, the nonlinear feedback term XY1 is included to reach a steady state.  In the 3DLMP5d and 3DLMP6d, XY and bZ, which are balanced 
with Q1  and Q2 , are comparable to those in the 5DLM.
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Figure 4. Time evolution of X for the 5DLM, 3DLMP5d, and 3DLMP6d.  Panels (a-b) display solutions for r = 35 and r = 40, respectively, during the period of τ = 0-25. Panel (c) displays 
a zoomed-in view of solutions during the period of τ = 10-15. Black, orange, and green lines represent results from the 5DLM, 3DLMP5d, and 3DLMP6d, respectively. In panel (d), color 
lines display the trend modes for the solutions during the period of τ = 0-5 from the corresponding LMs, each of which is calculated by removing oscillatory components from the solutions 
in panel (a). The blue line in panel (d) represents the solution of X from the 5DLM, as a reference.

~ 52.1 , which is larger than that of the 3DLM ( ~ 24.74cr ). The value 
is comparable to but larger than the rc of the corresponding 5DLM 
( ~ 42.9 ). Similar characteristics are observed when comparing the 
3DLMP6d and 6DLM, which yield rc values of 51.4 and 41.1, respectively. 
The above features suggest that the stability of the 3DMLP5d 
(3DLMP6d) is overestimated between 43 52r≤ ≤  ( 41.1 51r< < ), as 
compared to the 5DLM (or 6DLM). For stable solutions, the revised 
3DLM produces the same steady-state (equilibrium-state) solutions as 
those in the 5DLM (or 6DLM) when parameters are set to be the same 
in the models (e.g., 35r = ). Although the revised 3DLM (3DLMP5d or 
3DLMP6d) is unable to accurately represent the evolution of transient 
solutions in both amplitudes and phases, as compared to the 5DLM, 
the trend mode of its transient solution is comparable to that of the 
5DLM. The trend mode is determined using the newly developed 
parallel ensemble empirical mode decomposition (PEEMD) method. 
The characteristics of solutions such as overestimated stability, lack of 

detailed evolution, and a comparable trend mode are often found in the 
comparisons of coarse-resolution climate model and fine-resolution 
climate (or weather) model simulations.

This study and previous studies [2,7] have discussed the role of 
negative nonlinear thermodynamic feedback in improving solution 
stability and showed its relationship to the additional nonlinear terms 
(i.e., J(ψ,θ)) and the dissipative term (i.e., 2κ θ∇ ). A nonlinear feedback 
loop consists of a pair of downscale and upscale transfer processes via 
the Jacobian term[2], and can be continuously extended as long as 
new modes can be continuously generated. The extended nonlinear 
feedback loop may further stabilize or destabilize system solutions. 
The mathematical analysis provided in section 2.3 suggests that an 
averaging operator may contribute to dissipative processes, which play 
a role numerically similar to the Laplacian operator ( 2∇ ). As nonlinear 
advection terms and averaging operators are often included in climate 
models, we hypothesize that the nonlinear feedback of numerical 
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averaging/smoothing may suppress chaotic responses, leading to 
more stable solutions. This hypothesis will be examined using higher-
dimensional Lorenz models and climate/weather models with the TS 
method in a future study. As numerical averaging may impact the phase 
and amplitude of transient solutions, posing a challenge for verifying 
time-varying numerical solutions against observations (or, comparing 
the transient solution obtained from a low- and high-dimensional 
models), an alternative method such as the PEEMD for comparing 
their trend modes is required. Detailed analyses and comparisons of 
the different Lorenz models and their application to climate model 
simulations are currently being planned.
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