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Recent studies and experiments from several groups indicate 
that several, different types of bacteria (e.g., E. coli, S. enteriditis, 
S.typhimurium, and S. aureus) as well as the fungus Aspergillus 
fumigatus become many times more virulent in space than on Earth [1-
7]. They also grow faster, mutate more readily, become more infectious, 
and become more resistant to antibiotics [1,7,8], thus posing potential 
hazards to astronauts and space-travelers. Already, from several space 
missions, particularly at the space station, astronauts have (and are) 
responding in unexplained ways [1,7-9]. Soviet-era astronauts in the 
1960s- 1970s showed that Staphylococcus microorganisms aboard their 
spacecrafts demonstrated increased resistance to at least five common 
antibiotics [10-12].  Zea and his colleagues have found that E. coli 
grew 13-times faster on the space station than on Earth [7]. Overall, 
such data indicate that physiologic alterations of normally, non-lethal 
bacteria and viruses in space may change the health of astronauts 
in unpredictable manners during space voyages between planets, 
asteroids, and stars.

Here on Earth, a disturbing trend in antimicrobial resistance of 
both gram-negative and gram-positive pathogens and “superbugs” has 
seriously complicated the treatment of many immune-compromised, 
hospital patients [13- 20]. Too this problem, one must add the 
numerous hospitalizations and deaths from contaminated meats, 
poultry, vegetables, seafoods, and dairy products [21-23].  Almost one 
million people per year are killed by bacteria and “superbugs” due to 
antimicrobial resistance. If we add the untold millions per year who are 
dying from drug-resistant tuberculosis in Africa and India, the number 
of deaths becomes staggering. By about 2075, the number of people 
dying from drug-resistant infections could reach in excess of 35 million 
per year. But, if contaminated astronauts and future space travelers 
would return to Earth harboring the “super, super-bugs”, developed in 
space, we could see a worldwide new series of global plagues.

For more than five decades, our laboratories have been working 
on a new approach to develop host-defense factors that stimulate 
various arms of the innate and adaptive immune systems [24-38]. 
To this end, we have discovered a new host-defense factor, termed 
“HDFx”, that is a conserved protein found in mice, rats, guinea-pigs, 
rabbits, dogs and sub-human primates [39-44]. More than 135 years 
ago, Elie Metchnikoff, the great father of immunology, hypothesized 

that the body, under stressful conditions, might produce powerful 
immune-stimulants which perforce would act on different arms of 
the innate immune system and serve to protect against insults and 
diseases [45]. Metchnikoff’s early studies pointed to the important 
contributions of macrophages and phagocytic leukocytes to natural 
(innate) resistance against pathogenic bacteria and viruses. Over the 
past 40 years, considerable evidence has accumulated to support a 
strong relationship between the functional (physiologic) state of the 
microcirculation, macrophages-phagocytes, natural killer (NK) cells, 
the reticuloendothelial system (RES), and “pit cells” in the liver to 
host defense and resistance to pathogens, trauma, circulatory shock, 
infections, and combined injuries [39-44,46-49].

A number of experimental studies, from our laboratories, have 
clearly shown that HDFx is protective (to different degrees) against a 
variety of systemic bodily insults ranging from hemorrhage, trauma, 
endotoxins, a variety of lethal bacteria (e.g., E.coli, S.enteriditis, 
C.welchii, S.aureus, among others), combined injuries, centripetal 
forces, septic shock, and several infectious fungal organisms (e.g., 
A. fumigatus) [39-44,48,49]. Interestingly, HDFx was found to be 
protective under normal Earth gravity conditions against the same 
superbugs i.e., bacteria and fungi) found to grow abnormally and 
become more infectious in environments seen on the space station 
and under zero-gravity [39,42,43,49]. A unique attribute of HDFx is 
that it can accelerate wound healing [41], and it has protective qualities 
even in diseases such as nonalcoholic steatohepatitis (NASH) which 
often results in liver carcinomas [48]. We have suggested that many of 
HDFx’s attributes make it very likely to be protective in the treatment 
and amelioration of hemorrhagic fever viruses [42].

It appears, worldwide, that many hospitalized patients die of 
common and once treatable diseases, such as pneumonia and blood 
(septic) or urinary tract infections [13-20]. Today, it is difficult to 
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undertake major surgical procedures or chemotherapy without the 
use of antibiotics, as patients die afterwards from infections [13-20]. 
Gram-negative and fungal superbugs seem to be the major culprits 
in most of these patients (e.g., mutated E.coli, S.enteriditis, S.aureus, 
A.fumagatus) in these patient deaths [13-20]. Gram-negative bacteria 
appear to be more difficult to kill than gram-positive bacteria because 
they are protected by “double membranes”.  So, in order to kill the 
gram-negative bacteria, most of the pharmacological approaches 
have been to design antibiotics to penetrate these membrane barriers. 
In our opinion, another more likely approach would be to engulf the 
bacteria (and fungi) and digest them within macrophages, Kupffer 
cell macrophages, phagocytic leukocytes, platelets, NK cells, and “pit 
cells”. But, in order for these cells to access the bacteria and fungi, we 
believe the microcirculation to key organs (i.e., liver, spleen, lungs) 
must perforce have optimal capillary blood flow and distribution. 
Therefore, an ideal drug or therapeutic modality would be one that 
could stimulate multiple arms of the innate immune system coupled to 
modulation of optimal (and enhanced) microcirculatory blood flows 
in the aforementioned key organ systems. So far, HDFx appears to 
be the only molecule that combines these qualities and demonstrates 
therapeutic attributes against several classes of “superbugs” and fungal 
microorganisms [39-43,48,49].

We believe the approaches outlined in the above, using HDFx or 
its derivatives, could be the ideal drug (s) to pretreat all astronauts and 
space travelers scheduled for travel to the moon, planets, asteroids, 
and stars  in order to prevent susceptibility to enhanced virulence of 
bacteria, fungi, and other micro-organisms created by zero-gravity and 
deep-space conditions.

A major objective of our group is to secure adequate funding to 
elucidate the complete, complex molecular structure of HDFx and then 
via genetic engineering to produce large quantities of HDFx for further 
testing in human subjects and animals under zero-gravity and deep-
space conditions to confirm our hypothesis.
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