
Research Article

Clinical Proteomics & Bioinformatics

Clin Proteom Bioinform, 2016         doi: 10.15761/CPB.1000101  Volume 1(1): 1-3

Conceptual aspects of causal networks in an applied 
context
Azam Yazdani*
Human Genetics Center , UTHealth School of Public Health, 1200 Pressler Street, Suite E-447, Houston, Texas 77030, USA

Abstract
Making causal inference is conceptually straightforward in the setting of a randomized intervention, such as a clinical trial. However, in observational studies, 
which represent the majority of most large-scale epidemiologic studies, causal inference is complicated by confounding and lack of clear directionality underlying 
an observed association. In most large scale biomedical applications, causal inference is embodied in Directed Acyclic Graphs (DAG), which is an illustration of 
causal relationships (i.e. arrows) among the variables (i.e. nodes). A key concept for making causal inference in the context of observational studies is the assignment 
mechanism, whereby some individuals are treated and some are not. This perspective provides a structure for thinking about causal networks in the context of the 
assignment mechanism (AM). Estimation of effect sizes of the observed directed relationships is presented and discussed. 
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Introduction
Inferring cause-effect relationships among variables is of primary 

importance in many sciences and is growing in importance as a 
result of very large datasets in health, and genomics. There are several 
statistical frameworks underlying causal inference, such as those of 
Rubin’s potential outcome framework [1,2], Pearl’s structural equation 
modeling framework [3], and Dawid’s regime indicator framework 
[4], that have been established for making causal inference. These 
frameworks are hardly known to most biomedical researchers or 
biostatisticians who could by applying them to address real world 
problems. Large segments of the statistical community and decision 
makers find it hard to benefit from causal analyses. The main reason, we 
believe, is not a philosophical barrier about data analysis establishing 
causality, but rather lack of familiarity with the vocabulary and methods 
in the field. Undertaking statistical causal inference requires systematic 
extensions to the standard language of statistics, and this perspective 
provides a step toward this end.

Among available statistical causal inference frameworks, Pearl’s 
causal network, which are compatible with structural equation models 
(SEM) [3], can be seen as a pragmatic approach to solving real world 
problems, especially in the age of large data sets. [5] has critiqued 
Pearl’s framework and suggests that it requires additional explicit, 
methodological and philosophical justification. The concept of the 
assignment mechanism developed by Rubin (2005) describes the 
circumstances by which some individuals are exposed to a treatment 
of interest and some are not. In this perspective, we first connect causal 
networks to the concept of the assignment mechanism (AM). Then, we 
formalize the causal network parameterization using the AM notation. 
After discussing the concept and notations of causal networks and the 
AM, we estimate the direct and total effects. 

Overview of the assignment mechanism 
The questions that motivate most studies in the health, economics, 

social and behavioral sciences are causal relationships and not only 
associations, such as the efficacy of a given drug in a given population. 

The classical approach for determining such relationships uses 
randomized experiments where single or a few variables are intervened 
on. Such intervention experiments, however, are expensive, unethical 
or even infeasible. Hence, it is desirable to infer causal effects from 
so-called observational data obtained by observing a system without 
subjecting it to interventions. Then, to estimate the effect of a treatment 
on a response, we need to know how different values of the treatment 
are assigned. The circumstances by which some individuals are exposed 
to a treatment of interest and some are not is called the assignment 
mechanism (AM). 

To achieve causal inference, the important data elements include 
not only the value of the observations but also the reason why one of 
the possible exposures or treatments has been realized and not others. 
The notation ( )RAM K  is introduced as the third element (in addition 
to treatment and response value) and is called the causal element [6]. 
The practitioners need to understand the underlying mechanisms by 
which some individuals have a certain exposure level and some do not. 
The knowledge related to response is represented by KR and is required 
to identify the AM. In a randomized clinical trial the AM is straight 
forward (i.e. the treatment assignment mechanism is unrelated to 
response) and presumably under the control of the investigators. In an 
observational study, many factors (covariates) may influence the AM 
but only some of them are related to response. Variables that influence 
both the outcome and the AM are termed confounders [7]. The aim 
of considering the AM is to identify individuals with similar covariate 
distributions as if there were a randomization. In an epidemiologic 
study, this is equivalent to matching [8]. In a data analysis setting, this 
is equivalent to SEM [3], where the AM is understood and modeled. 
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Formalizing the AM in the context of causal networks compatible with 
the SEM is more practical in the age of big data. Therefore, in this study, 
we formalize the AM within the context of statistical causal networks. 

Causal networks are illustrations of the AM, the data generating 
process underlying the study observations, and provide a pragmatic 
approach to distinguish confounders of the AM from among the 
covariates, and allows one to analyze observational data as if an 
intervention was carried out. To the analyst, causal graphs are 
illustrations of the data generating process [3] (i.e. assignment 
mechanism [2] that underlie the observations. It is important to 
understand and take into account that the model in a causal setting 
is conditioned explicitly or implicitly on illumination of assignment 
mechanism. 

Assume the assignment mechanism over p variables pYY ...,,1  is 
formalized by a network, here a Directed Acyclic Graph (DAG). The 
distribution P over these variables is:

1 ( )
1

( ,..., ) ( | )
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p j pa j
j

P Y Y P Y Y
=

=∏ , 			                      (1)

where pa(j) denotes the set of predecessors of node j and are directly 
connected to j in the network, called parents of node j. For ( )i pa j∈ , 
there is i j→  in the DAG or i jY Y→ . Note that the formula in (1) 
represents the Markov properties over these set of variables compatible 
with the underlying DAG, an illustration of the assignment mechanism 
that governs over this set of variables. This is a strong assumption in 
application of DAGs and can be represented in (1) as
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By conditioning factorized distributions on the causal element
( )RAM K , we explicitly represent that the AM is taken into account and 

the work can, therefore, be considered to be within a causal setting.

 Assume the AM over four variables X, Y, Z and H is illustrated 
in Figure 1. The variable of interest is H, and we are typically 
investigating the influence of the other variables on H. To factorize 
the joint distribution over these 4 variables, we first identify potential 
confounders (Figure 1).

Variables X, Y, and Z are all called covariates. However, the effect of 
X reaches to H only through Z and Y. Therefore, X is not a confounder 
of the value of H. The set of confounders for variable H is ( ) { , }C H Y Z= . 
The interested reader is referred to the backdoor criterion in [3] for 

further information. The joint probability over these variables are then 
factorized as 

( , , , | ( )) ( | , ) ( | ) ( | ) ( )RP H Y Z X AM K P H Y Z P Z X P Y X P X= .

Without conditioning on the causal element, ( )RAM K , such a 
unique factorization is not possible [9,10].

Formally Representation of Causal Networks 
Assume a DAG ),( εvD = , where v is a set of nodes with p 

elements, corresponds a set of p random variables with joint Gaussian 
distribution and ε  is a set of edges which connect the nodes and 
represent the conditional dependencies between two corresponding 
variables. The existence of a directed edge between two nodes 
shows the direction of effect (the flow of information) between the 
correspondent variables. The concept of a DAG ),( εvD = depends on 
the nodes in v and edges in v and any inference depends on the set (v,
ε ). Assume P is a joint probability distribution over variables pYY ...,,1  
corresponding with nodes in DAG ( , )D v ε= . D and P must satisfy 
the Markov condition, the strong assumption in causal inference by 
networks. This means variables are related with the causal network 
DAG ( , )D v ε= . Furthermore, we assume these variables have a joint 
normal distribution which satisfies the Markov property with respect 
to the DAG D and all marginal and conditional independencies can 
be directly obtained from the graph D: every variable Yi, vi∈  is 
independent of any subset of its predecessors conditioned on the set 
of its direct or immediate causes of Yi, corresponding with parents of i, 

( ){ ; & \ ( )} | ( , ( ))i k pa i RY Y i k v pa i Y AM K⊥ ∈

where Yk occurs before Yk and parental set pa (i) denotes the set of 
parents of node i relatives to AM formalized by ( , )D v ε= . 

In SEM and under the assumption of a Gaussian distribution, we 
can write 

1

1
| ( )
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j

Y AM K Y Uλ
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=

= +∑ , 			                (2)

where ~ (0,1)iU N  and is independent of the Yj s in the right side of the 
model. 0ijλ ≠  is equivalent with an edge j i→  in DAG D which is due 
to compatibility of SEM and AM formalized as the DAG D. Therefore, 
the coefficients can be interpreted as statistical causal effects. SEM is a 
deterministic form of probability models or conditional dependencies, 
where all uncertainties are confined in the variable U. 

Given a causal network structure, the goal in this section is to infer 
edge weights for the directed arrows in the network (the strength of 
each causal relationship). We first define direct, indirect, and total 
effects, and then represent the computation by the backdoor criterion 
[3]. A direct effect is the effect through an immediate path, with no 
other intervening variables/mediators. Total effect is defined as an 
effect with or without intermediation of other variables. In Figure 
2, the effect of X on Z through path X Z→ is the direct effect and 
through path X Y Z→ → is called the indirect effect. The effect X on 
Z through these two paths is called the total effect. The effect of Y on Z 
in Figure 2 is only through the direct pathY Z→ . Therefore, the direct 
and total effects of Y on Z are the same. To obtain this effect, X, in the 
back-door pathY X Z← →  is called a confounder. In other words, 
X confounds the assigning mechanism Y on Z since X influences both 
Y and Z. Recall that the causal network structure in Figure 2 is an 
illustration of the assignment mechanism over these three variables 
and all discussions and equations for the effect measurement is given 
the assignment mechanism illumination. 

                                                       

Figure 1. The illustration of the assignment mechanism of variable H formalized as a DAG 
over four variables. 
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(Figure 2) In this structure, variable X has direct effect and indirect 
effect on variable Z. The latter is via variable Y. Variable Z does not have 
any effect on variables X and Y. The effect of Y on Z is confounded by X.

To estimate the direct effect of Y on Z, we need to consider the 
causal element ( )RAM K  embodied in the DAG in Figure 2, which 
illustrates the assignment mechanism behind the observed variables Y 
and Z. By taking the causal element into account, we see that variation 
in X causes variation in both Y and Z. To find the effect of Y (and not 
X) on Z, we first adjust for the effect of X on Y by 

| ( )R yx yx yxY AM K X eα β= + + ,                                                   (3)

and then find the effect of variations in Y on Z by 

| ( )R z yx zZ AM K e eα γ= + +                                                          (4)

Equation (4) represents the degree to which variable Y is responsible 
for the variation in Z, regardless of the values of the variable X. 
Therefore, the coefficient γ  is interpreted as the statistical causal effect 
of Y on Z. However, in the regression of Z on Y 

' 'Z Y eα λ= + + ,

the coefficient λ  shows only the association between Y and Z, since 
some of the variations in Z attributed to Y is due to the confounder X. 

We can estimate the total effect of X on Z by the coefficient zxβ in 
the following equation:

| ( )R zx zx zxZ AM K X eα β= + + .

We estimate the direct effect of X on Z by:

| ( )z Re AM K X eα β= + + , 

where ze  is the residual Z after removing the effect of Y on Z. The 
coefficient β is interpreted as the direct effect of X on Z. Interested 
readers are referred to [11-13] for further discussion about causal effect 
measurement.

Conclusion
We have provided a short and selective perspective of causal 

inference, including network analysis, the concept of the assignment 
mechanism, and effect size estimation. A unique aspect of causal 
inference compared to traditional applied statistics is captured in the 
concept of the assignment mechanism. To achieve causal inference, 
the assignment mechanism must be understood and requires close 
collaboration between analysts and other biomedical scientists. Taking 
the AM into account, we are able to identify confounders and measure 
direct and total causal effects. The assignment mechanism, here 
formalized in a DAG, can be either known a priori or estimated by 
an algorithm for directed structures. In this perspective, we assumed 
that the assignment mechanism is known. In the case of known AM, 
confounders can be identified from the AM and the measurements 
remain in a causal setting. 
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Figure 2. Illumination of the assignment mechanism for the variable of interest Z.
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