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Abstract

Making causal inference is conceptually straightforward in the setting of a randomized intervention, such as a clinical trial. However, in observational studies,
which represent the majority of most large-scale epidemiologic studies, causal inference is complicated by confounding and lack of clear directionality underlying
an observed association. In most large scale biomedical applications, causal inference is embodied in Directed Acyclic Graphs (DAG), which is an illustration of
causal relationships (i.e. arrows) among the variables (i.e. nodes). A key concept for making causal inference in the context of observational studies is the assignment
mechanism, whereby some individuals are treated and some are not. This perspective provides a structure for thinking about causal networks in the context of the

assignment mechanism (AM). Estimation of effect sizes of the observed directed relationships is presented and discussed.

Introduction

Inferring cause-effect relationships among variables is of primary
importance in many sciences and is growing in importance as a
result of very large datasets in health, and genomics. There are several
statistical frameworks underlying causal inference, such as those of
Rubin’s potential outcome framework [1,2], Pear!’s structural equation
modeling framework [3], and Dawid’s regime indicator framework
[4], that have been established for making causal inference. These
frameworks are hardly known to most biomedical researchers or
biostatisticians who could by applying them to address real world
problems. Large segments of the statistical community and decision
makers find it hard to benefit from causal analyses. The main reason, we
believe, is not a philosophical barrier about data analysis establishing
causality, but rather lack of familiarity with the vocabulary and methods
in the field. Undertaking statistical causal inference requires systematic
extensions to the standard language of statistics, and this perspective
provides a step toward this end.

Among available statistical causal inference frameworks, Pearl’s
causal network, which are compatible with structural equation models
(SEM) [3], can be seen as a pragmatic approach to solving real world
problems, especially in the age of large data sets. [5] has critiqued
Pearl’s framework and suggests that it requires additional explicit,
methodological and philosophical justification. The concept of the
assignment mechanism developed by Rubin (2005) describes the
circumstances by which some individuals are exposed to a treatment
of interest and some are not. In this perspective, we first connect causal
networks to the concept of the assignment mechanism (AM). Then, we
formalize the causal network parameterization using the AM notation.
After discussing the concept and notations of causal networks and the
AM, we estimate the direct and total effects.

Overview of the assignment mechanism

The questions that motivate most studies in the health, economics,
social and behavioral sciences are causal relationships and not only
associations, such as the efficacy of a given drug in a given population.
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The classical approach for determining such relationships uses
randomized experiments where single or a few variables are intervened
on. Such intervention experiments, however, are expensive, unethical
or even infeasible. Hence, it is desirable to infer causal effects from
so-called observational data obtained by observing a system without
subjecting it to interventions. Then, to estimate the effect of a treatment
on a response, we need to know how different values of the treatment
are assigned. The circumstances by which some individuals are exposed
to a treatment of interest and some are not is called the assignment
mechanism (AM).

To achieve causal inference, the important data elements include
not only the value of the observations but also the reason why one of
the possible exposures or treatments has been realized and not others.
The notation AM(K,) is introduced as the third element (in addition
to treatment and response value) and is called the causal element [6].
The practitioners need to understand the underlying mechanisms by
which some individuals have a certain exposure level and some do not.
The knowledge related to response is represented by K, and is required
to identify the AM. In a randomized clinical trial the AM is straight
forward (i.e. the treatment assignment mechanism is unrelated to
response) and presumably under the control of the investigators. In an
observational study, many factors (covariates) may influence the AM
but only some of them are related to response. Variables that influence
both the outcome and the AM are termed confounders [7]. The aim
of considering the AM is to identify individuals with similar covariate
distributions as if there were a randomization. In an epidemiologic
study, this is equivalent to matching [8]. In a data analysis setting, this
is equivalent to SEM [3], where the AM is understood and modeled.
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Formalizing the AM in the context of causal networks compatible with
the SEM is more practical in the age of big data. Therefore, in this study,
we formalize the AM within the context of statistical causal networks.

Causal networks are illustrations of the AM, the data generating
process underlying the study observations, and provide a pragmatic
approach to distinguish confounders of the AM from among the
covariates, and allows one to analyze observational data as if an
intervention was carried out. To the analyst, causal graphs are
illustrations of the data generating process [3] (ie. assignment
mechanism [2] that underlie the observations. It is important to
understand and take into account that the model in a causal setting
is conditioned explicitly or implicitly on illumination of assignment
mechanism.

Assume the assignment mechanism over p variables Y, .., ¥, is

formalized by a network, here a Directed Acyclic Graph (DAG). The
distribution P over these variables is:

PY,..Y)=][PX,|Y,.,) 1)

where paf(j) denotes the set of predecessors of node j and are directly
connected to j in the network, called parents of node j. Fori e pa( ),
there is / —> j in the DAG or ¥, — Y,. Note that the formula in (1)
represents the Markov properties over these set of variables compatible
with the underlying DAG, an illustration of the assignment mechanism
that governs over this set of variables. This is a strong assumption in
application of DAGs and can be represented in (1) as

p
P(Y,..Y, | AM(K) = P(Y; 1Y, ;)
J=1
By conditioning factorized distributions on the causal element

AM (K ), we explicitly represent that the AM is taken into account and
the work can, therefore, be considered to be within a causal setting.

Assume the AM over four variables X, Y, Z and H is illustrated
in Figure 1. The variable of interest is H, and we are typically
investigating the influence of the other variables on H. To factorize
the joint distribution over these 4 variables, we first identify potential
confounders (Figure 1).

Variables X, Y, and Z are all called covariates. However, the effect of
X reaches to H only through Z and Y. Therefore, X is not a confounder
of the value of H. The set of confounders for variable H isC(H)=1{Y,Z}.
The interested reader is referred to the backdoor criterion in [3] for

Figure 1. The illustration of the assignment mechanism of variable H formalized as a DAG
over four variables.
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further information. The joint probability over these variables are then
factorized as

P(H,Y,Z,X | AM(K,))=P(H|Y,Z)P(Z | X)P(Y | X)P(X) -

Without conditioning on the causal element, AM(K,), such a
unique factorization is not possible [9,10].

Formally Representation of Causal Networks

Assume a DAGD =(v,&), where v is a set of nodes with p
elements, corresponds a set of p random variables with joint Gaussian
distribution and ¢ is a set of edges which connect the nodes and
represent the conditional dependencies between two corresponding
variables. The existence of a directed edge between two nodes
shows the direction of effect (the flow of information) between the
correspondent variables. The concept of a DAG D = (v,&) depends on
the nodes in v and edges in v and any inference depends on the set (v,
£). Assume P is a joint probability distribution over variables %, .., ¥,
corresponding with nodes in DAGD =(v,¢). D and P must satisfy
the Markov condition, the strong assumption in causal inference by
networks. This means variables are related with the causal network
DAG D = (v, ¢). Furthermore, we assume these variables have a joint
normal distribution which satisfies the Markov property with respect
to the DAG D and all marginal and conditional independencies can
be directly obtained from the graph D: every variable Y, ey is
independent of any subset of its predecessors conditioned on the set
of its direct or immediate causes of Y, corresponding with parents of i,

Y, L (Y51 &k v\ pa(i)}| (¥, AM(K,)
where Y, occurs before Y, and parental set pa (i) denotes the set of
parents of node i relatives to AM formalized by D = (v, £).

In SEM and under the assumption of a Gaussian distribution, we
can write

i-1
Y| AM(K) =Y AY,+U,, )

j=1
where U, ~ N(0,1) and is independent of the Y;.s in the right side of the

model. 4; # 0 is equivalent withanedge j — / in DAG D which s due
to compatibility of SEM and AM formalized as the DAG D. Therefore,
the coeflicients can be interpreted as statistical causal effects. SEM is a
deterministic form of probability models or conditional dependencies,
where all uncertainties are confined in the variable U.

Given a causal network structure, the goal in this section is to infer
edge weights for the directed arrows in the network (the strength of
each causal relationship). We first define direct, indirect, and total
effects, and then represent the computation by the backdoor criterion
[3]. A direct effect is the effect through an immediate path, with no
other intervening variables/mediators. Total effect is defined as an
effect with or without intermediation of other variables. In Figure
2, the effect of X on Z through path X — Zis the direct effect and
through path X — Y — Z is called the indirect effect. The effect X on
Z through these two paths is called the total effect. The effect of Y on Z
in Figure 2 is only through the direct path Y — Z . Therefore, the direct
and total effects of Y on Z are the same. To obtain this effect, X, in the
back-door pathy «— X — Z is called a confounder. In other words,
X confounds the assigning mechanism Y on Z since X influences both
Y and Z. Recall that the causal network structure in Figure 2 is an
illustration of the assignment mechanism over these three variables
and all discussions and equations for the effect measurement is given
the assignment mechanism illumination.
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Figure 2. Illumination of the assignment mechanism for the variable of interest Z.

(Figure 2) In this structure, variable X has direct effect and indirect
effect on variable Z. The latter is via variable Y. Variable Z does not have
any effect on variables X and Y. The effect of Y on Z is confounded by X.

To estimate the direct effect of Y on Z, we need to consider the
causal element 4M (K,) embodied in the DAG in Figure 2, which
illustrates the assignment mechanism behind the observed variables Y
and Z. By taking the causal element into account, we see that variation
in X causes variation in both Y and Z. To find the effect of Y (and not
X) on Z, we first adjust for the effect of X on Y by

Y[ AM(K) =a, + B, X +e,- (3)
and then find the effect of variations in Y on Z by
Z|AM(K)=a.+ye, +e. (4)

Equation (4) represents the degree to which variable Yis responsible
for the variation in Z, regardless of the values of the variable X.
Therefore, the coefficient 7 is interpreted as the statistical causal effect
of Y on Z. However, in the regression of Zon Y

Z=a +AY+e>

the coefficient 4 shows only the association between Y and Z, since
some of the variations in Z attributed to Y is due to the confounder X.

We can estimate the total effect of X on Z by the coeflicient f_, in
the following equation:

zZ | AM(KR) = azx +ﬂzxX+ezx'
We estimate the direct effect of X on Z by:
AM(K)=a +f X +e >

where €, is the residual Z after removing the effect of Y on Z. The
coeflicient Bis interpreted as the direct effect of X on Z. Interested
readers are referred to [11-13] for further discussion about causal effect
measurement.

eZ

Conclusion

We have provided a short and selective perspective of causal
inference, including network analysis, the concept of the assignment
mechanism, and effect size estimation. A unique aspect of causal
inference compared to traditional applied statistics is captured in the
concept of the assignment mechanism. To achieve causal inference,
the assignment mechanism must be understood and requires close
collaboration between analysts and other biomedical scientists. Taking
the AM into account, we are able to identify confounders and measure
direct and total causal effects. The assignment mechanism, here
formalized in a DAG, can be either known a priori or estimated by
an algorithm for directed structures. In this perspective, we assumed
that the assignment mechanism is known. In the case of known AM,
confounders can be identified from the AM and the measurements
remain in a causal setting.
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