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Abstract
Erythrocyte deformability is a biorheological influent factor on blood viscosity, cellular oxygenation and a biomarker of acute and chronic inflammation. An inverse 
relationship between erythrocyte ability to reversibly change its shape with nitric oxide (NO) efflux from erythrocytes was reported in patients with hypercholesterolemia, 
hypertension and renal transplant. Erythrocyte NO efflux is negatively associated with carotid intima-media thickness and an independent predictor of this structural 
anomaly. High concentrations of oxidized LDL when in presence of healthy human erythrocytes increase its ability to scavenge NO. 

The aim of this work was to evaluate in vitro, the effects on erythrocyte nitric oxide (NO) metabolism and its deformability under presence of lipoproteins LDL /
HDL. 

Aliquots of healthy human blood samples were enriched, or not (control), with synthetic LDL/HDL solutions ([LDL/HDL]1=18.44/0.776 mg/dL and [LDL/
HDL]2=36.88/1.552 mg/dL). NO efflux from erythrocyte and its content on nitrite, nitrate, S-nitrosoglutathione (GSNO), peroxynitrite and its deformability (EEI) 
were determined. So, from each blood sample three aliquots were made: the control and two different LDL/HDL concentrations. 

In the present study, were not observed variations on peroxynitrite levels inside erythrocytes, on the ability to scavenge NO and on EEI at all shear stress when 
compared to the values obtained in untreated samples. NO mobilization inside erythrocytes of the treated aliquots were showed by the significantly increased of 
nitrite, nitrate and S-nitrosoglutathione levels in relation to the control aliquots without significant differences between both treated aliquots.

In this in vitro study with erythrocytes obtained from blood samples of healthy human we show that under LDL/HDL addition, maintenance of its membrane 
deformability, nitric oxide and the nitrogen redox level content. All these results evidence the ability of erythrocytes to answer LDL/HDL binding by increasing 
NO mobilization with higher nitrite, nitrate and GSNO concentrations. Better understanding of the signal transduction mechanism associated to the erythrocytes 
binding LDL/HDL receptors may bring potential targets in cases of diminished erythrocyte deformability or impeachment delivery of nitric oxide to alleviate the 
compromised microcirculation.
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Introduction
The endothelial nitric oxide (NO) liberated to the lumen of the 

vessel passes through the erythrocyte membrane band 3 protein and is 
fixed by hemoglobin molecules with generation of S-nitrosohemoglobin 
(SNO-Hb) [1,2]. Inside erythrocytes the glutathione reacts with NO 
originating S-nitrosoglutathione (GSNO) [3]. Also NO can react with 
superoxide anion forming peroxynitrite that decomposes in nitrites 
and nitrates [4-6]. The efflux of NO from erythrocyte occurs through 
a trans-nitrosylation process involving the thiol group of the band 3 
protein that receives NO from SNO-Hb [7,8].

Erythrocytes scavenger and liberate oxygen and NO at high and 
low local tissue oxygen partial pressure respectively [9]. Erythrocyte 
NO efflux is negatively associated with carotid intima-media thickness 
and an independent predictor of this structural anomaly [10]. 
Erythrocyte deformability is a biorheological influent factor on blood 
viscosity, cellular oxygenation and a biomarker of acute and chronic 
inflammation [11]. 

An inverse relationship between erythrocyte ability to reversibly 
change its shape with nitric oxide (NO) efflux, from erythrocytes, was 
reported in patients with hypercholesterolemia, hypertension and renal 
transplant [12]. High concentrations of oxidized LDL when in presence 
of healthy human erythrocytes increase its ability to scavenge NO [13]. 

The aim of this work was to evaluate in vitro, the effects on 
erythrocyte nitric oxide (NO) metabolism and its deformability under 
presence of lipoproteins LDL /HDL. 

Material and methods
General reagents were purchased by Sigma- Aldrich Co., nitrate 

reductase from Aspergillus Niger, NADPH (tetra sodium salt), sodium 
nitrate, sodium nitrite and atropine were all from Sigma Chemical 
Co., St Louis, MO, USA. The Griess Reagent kit was purchased from 
Molecular Probes, Eugene, USA. Sodium chloride was purchased 
from AnalaR (UK) and chloroform and ethanol 95% from MERCK, 
Darmstadt, Germany. Blood samples were collected into tubes BD 
VacuntainerTM with Lithium heparin (17 UI/mL) as an anticoagulant. 
Cholesterol Low-density lipoprotein (LDL)/Cholesterol High-density 
lipoprotein (HDL) suspension was purchased from Spinreact (Spain) 
and the initial concentrations were 184.4 mg/dL and 77.6 mg/dL, 
respectively.
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Experimental model in vitro 
Blood sampling and incubation procedure - Human venous blood 

samples were collected from the forearm vein of healthy Caucasian 
men, after informed consent, at the Portuguese Institute of Blood of 
Lisbon into tubes with lithium heparin (17 IU/ml) as anticoagulant. 
This “in vitro” study was performed under the protocol established 
with the Portuguese Institute of Blood in Lisbon Total blood was 
divided into three aliquots of 1 mL each and centrifuged at 11000 rpm 
(Biofuge 15 centrifuge, Heraeus) during 3 min at room temperature.

Then 10 μL of plasma were removed and replaced by the same volume 
of either physiological serum (Control) or an LDL/HDL suspension 
([LDL/HDL]1=18.44/0.776 mg/dL and [LDL/HDL]2=36.88/1.552 mg/
dL). With this procedure, no hematocrit variations were obtained. 
Then the blood samples were homogenized by gently inversion and 
after an incubation period of 30 min the erythrocyte deformability 
index was determined. 

Then the blood was centrifuged again at 11000 rpm for 5 min 
(Biofuge 15 centrifuge, Heraeus) at room temperature. The plasma 
and buffy-coat (leucocytes and platelets) were discarded and the 
erythrocytes were used to determine the levels of its NO efflux and the 
content on nitrite/nitrate, peroxynitrite and S-nitrosoglutathione. 

Erythrocyte deformability
The erythrocyte deformability for different shear stress (0.30, 

0.60, 1.20, 3.00, 12.00, 30.00 and 60.00 Pa) was determined by using 
the Rheodyn SSD shear stress diffractometer from Myrenne GMBH 
(Roentgen, Germany) and erythrocyte deformability is expressed as 
the elongation index (EI) in percentage.

The Rheodyn SSD diffractometer determines RBC deformability 
by simulating the shear forces exerted by the blood flow and vascular 
walls on the erythrocytes [14]. Erythrocytes are suspended in a viscous 
medium and placed between a rotating optical disk and a stationary 
disk. A well-defined shear force is exerted upon the suspension 
which forces the erythrocytes to deform to ellipsoids and align with 
the fluid shear stresses. If a laser beam is allowed to pass through the 
erythrocyte suspension a diffraction pattern appears on the opposite 
end. That diffraction pattern will be circular with resting erythrocytes, 
but becomes elliptical when the erythrocytes are deformed by shear. 
The light intensity of the diffraction pattern are measured at two 
different points (A and B), equidistant from the center of the image. 
The erythrocyte elongation index (EEI), in percentage, is obtained 
according the following formula: EEI (%) = (A – B)/( A + B) × 100.

Measurement of NO by an amperometric method 
Following incubation, the aliquots of blood samples were 

centrifuged and sodium chloride 0.9% at pH 7.0 was added in order 
to reach a hematocrit (Ht) of 0.05%. The erythrocyte suspension was 
mixed by gently inversion of tubes.

For amperometric NO quantification, we used the amino-IV 
sensor (Innovative Instruments Inc. FL, USA), as previously described 
[15]. Briefly, after stabilization of the NO sensor immersed in 
erythrocyte suspensions, the erythrocytes were stimulated with ACh 
10 mM and changes in the electric current registered, the change being 
proportional to the amount of NO efflux from erythrocytes by ACh-
stimulated erythrocytes.

Measurement of erythrocyte nitrite and nitrate concentrations 

After incubation, the aliquots of blood samples were centrifuged 
and the supernatant was separated from the pellet to give packed 

erythrocytes. Nitrite and nitrate levels in the intra-erythrocyte 
compartment were determined after submitting the pellet of each 
suspension to hemolysis and hemoglobin precipitation. Hemolysis 
was induced with distilled water and hemoglobin precipitation 
with ethanol and chloroform. Nitrite concentration was measured 
with the spectrophotometric Griess reaction at 548 nm. For nitrate 
measurement, this compound was first reduced to nitrites in presence 
of nitrate reductase [16].

Measurement of erythrocyte S-nitrosoglutathione (GSNO)

Colorimetric solutions containing a mixture of sulfanilic acid (B 
component of Griess reagent) and NEDD (A component of Griess 
reagent), consisting of 57.7 mM of sulfanilic acid and 1 mg/ml of 
NEDD, were dissolved in phosphate-buffered solution, pH 7.4 (PBS). 
To constitute the 10 mM HgCl2 (Sigma-Aldrich) mercury ion, stock 
solutions were prepared at 0.136 g/50 mL of dimethyl sulfoxide 
(DMSO) (Aldrich). GSNO was diluted to the desired concentrations, 
from 7.5 µM to 300 M, in the colorimetric analysis solutions. Various 
concentrations of mercury were added to a final concentration of 100 
mM. Following gentile shaking, the solution was left to stand for 20 min. 
A control spectrum was measured at 496 nm against a solution without 
mercury ion. 300 µL of erythrocyte suspensions preparing as described 
for nitrite /nitrate were added to the reaction mixture and GSNO 
concentrations were measured as described by Cook et al. 1996) [17].

Measurement of erythrocyte peroxynitrite 

For determinations of peroxynitrite levels the erythrocyte 
suspensions (10 µL) were incubated with 15 µL of 2,7-dichlorofluorescein 
diacetate (DCFC-DA) 10-3M, in 3 mL Phosphate buffer (155 mM, 
pH 7.4) during 30 min, at room temperature according to Possel et 
al. 1997, [18]. Suspensions of 200 µL of erythrocytes are diluted in 
the working solution with 1.8mL of the same buffer. The pellets 
were rinsed and used for fluorescence measurement in a Microplate 
Reader Fluorospectrophotometer (TECAN Infinity F500) with 
excitation and emission wavelengths at, 485 and 535 nm, respectively. 
The concentration of peroxynitrite was finally calculated through a 
calibration curve previously done in the same conditions. 

Statistical analysis

Data are presented as mean  ±  SD. Differences between the 
mean values were evaluated by using software GraphPad Prism 5 and 
analysis test used ANOVA followed the test of multiple comparison 
of Bonferroni’s. Values were considered statistically significant for 
p<0.05.

Results
Effects of lipoproteins on erythrocyte S-nitrosoglutathione 
concentration

Statistically significant values of GSNO concentrations were 
obtained in the aliquots of blood samples treated with LDL/HDL1 
(10.21 ± 1.393 µM) or LDL/HDL2 (10.31 ± 0.889 µM) when compared 
with the control aliquot 8.589 ± 0.9084 µM (Figure 1).

Effects of lipoproteins on the values of nitric oxide efflux 
from erythrocytes

The values of the efflux of nitric oxide from erythrocytes obtained 
in the blood aliquots treated with LDL/HDL1 (1.480 ± 0.3190 nM) 
or LDL/HDL2 (1.820 ± 0.6443 nM) didn´t present any significant 
differences when compared to the control (1.490 ± 0.3315 nM) (Figure 2). 
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Effects of lipoproteins on erythrocyte nitrite and nitrate 
concentrations

Statistically significant higher values (p<0.008) of nitrite 
concentrations were obtained in the aliquots of blood samples treated 
with LDL/HDL1 (9.850 ± 1.087 µM) or LDL/HDL2 (10.20 ± 1.101 
µM) when compared with the control aliquots 8.500 ± 0.7379 µM. 
Concerning the values obtained for the nitrate concentrations in the 
aliquots of blood samples treated with LDL/HDL1 (10.45 ± 1.132 µM) or 
LDL/HDL2 (10.65 ± 0.8960 µM) they were statistically significant (p<0,002) 
when compared with the control aliquots 8.900 ± 0.4216 µM (Figure 3).

Effects of lipoproteins on erythrocyte peroxynitrite

The values of peroxynitrite obtained in the blood aliquots treated 
with LDL/HDL1 (215.3 ± 68.14 µM) or LDL/HDL2 (208.3 ± 46.23 
µM) didn´t present any significant differences when compared to the 
control (241.7 ± 23.44 µM) (Figure 4). 

Effects of lipoproteins on erythrocyte deformability

The results of erythrocyte elongation index (EEI) values in 
percentages obtained for the different shear stress (0.30, 0.60, 1.20, 

3.00, 6.00, 12.00, 30.00 and 60.00 Pa) applied to control and LDL/HDL1 
or LDL/HDL2 blood samples aliquots are presented in Table 1 and 
Figure 5. 

No statistically significant values were obtained in all the shear 
stress conditions for the erythrocyte deformability obtained in presence 
of LDL/HDL1 or LDL/HDL2 or in its absence.

Discussion
In this in vitro study conducted with blood samples of heathy 

humans exposed or not (control aliquot) to two different concentrations 
of LDL/HDL no changes in NO efflux values from erythrocyte, no 
alterations on intra-erythrocyte peroxynitrite concentrations and 
an unaltered deformability profile, at all shear stress, were observed 
(Figures 2, 4 and 5). At variance the levels of NO derivatives molecules 
nitrite, nitrate and GSNO showed significantly increased values when 
compared with control aliquots (Figures 1 and 2). 

The unchanged deformability values obtained at lower and high 
shear stress for all treated blood samples aliquots with LDL/HDL is 
an indicative for membrane stability, internal viscosity maintenance 
and normal interactions of membrane peripheral and cytoskeleton 
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Figure 1. Effects of LDL/HDL suspensions on erythrocyte S-nitrosoglutathione levels in 
aliquots of blood samples. Values are mean ± SD (N=10) and significant differences were 
obtained in relation to the control with * p<0.05.
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Figure 2. Effects of LDL/HDL suspensions on the values of NO efflux from erythrocytes 
in aliquots of blood samples. Values are mean ± SD (N=10) and significant differences 
were obtained.
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Figure 3. Changes on nitrite (A) and nitrate (B) levels obtained in erythrocyte suspensions 
incubated with LDL/HDL suspensions. Values are mean ±SD (n=10) and significant 
differences are relative to the Control with + p<0.008 and # p<0.002.
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Figure 4. Changes on peroxinitrite levels obtained in erythrocyte suspensions incubated 
with LDL/HDL suspensions. Values are mean ± SD (n=10) and no significant differences 
were obtained in comparison to the Control.
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Figure 5. Mean ± SD values of erythrocyte elongation index (EEI) expressed in percentage 
obtained at shear stress values from 0.3 to 60.0 Pa. No significant differences were obtained 
in comparison with the Control group.

proteins biomolecules [19-21]. For example the degree of band 3 
protein phosphorylation did not affect the EEI values while activation 
or inhibition of protein kinase C (PKC) increased or decreased it 
respectively [20,21]. However, if the band 3 phosphorylation degree 
was increased by PKC activation simultaneously with the blockage 
of protein tyrosine phosphatase by a specific inhibitor, an increased 
EEI and higher NO efflux from erythrocytes were evidenced by the 
presence of acetylcholine [22,23].

LDL particles bind in a non-absolute specific way with erythrocyte 
membrane while 60% of membrane area can be occupied by HDL as 

described by Hui [24]. The occupancy of some areas of erythrocyte 
membrane by the presence of LDL/HDL do not affect erythrocyte 
deformability profile values in relation to those values verified in the 
control aliquots (Figure 5). Previously, in other study, the presence of 
LDL or HDL enrichment interferes in the promotion of erythrocyte 
aggregation tendency [25]. Significant higher values of erythrocyte 
aggregation were obtained in HDL enriched aliquots than for LDL 
enriched ones [25]. 

The absence of erythrocyte membrane instability obtained in 
blood samples aliquots under LDL/HDL addition is confirmed by the 
unchanged nitrogen reactive specie concentration of peroxynitrite, 
as evidenced by the normal levels obtained (Figure 4). Peroxynitrite 
is an index of auto-oxidation of oxyhemoglobin [26]. In the present 
study the addition of different concentrations of the lipoproteins sub 
fractions’ LDL/HDL seems to do not favor hemoglobin auto oxidation. 
Consequently, without superoxide anion generation and unchanged 
values of nitrogen reactive species peroxynitrite concentrations in relation 
the control aliquots (Figure 4), it was evidenced that when the thiol status 
of erythrocyte was maintained in normal range, by dithiothreitol, no 
alterations were verified in erythrocyte deformability [27].

Besides of the unmodified NO efflux and peroxynitrite levels 
(Figures 1 and 2) it was verified that NO mobilization inside erythrocytes 
by the increase of the derivatives biomolecule nitrite, nitrate and GSNO 
concentrations (Figures 1 and 3). Glutathione, an abundant molecule 
inside erythrocytes, has a thiol group that can react with nitric oxide 
forming nitrosothiols such as GSNO [28]. The NO reservoir attributed 
to glutathione could be influenced by the inactivation of glutathione 
reductase induced by the oxidative stress [29]. The increase GSNO 
levels is an indicator of reduced of oxidative stress and in this study 
the levels of peroxynitrite were unchanged under the presence of LDL/
HDL. Nitrite and nitrate can be generated from peroxynitrite [30].

This may be one explanation for the maintenance of peroxynitrite 
levels obtained in treated aliquots. Otherwise, NO could reduce 
oxyhemoglobin to methahemoglobin along with nitrate formation. 
These results are intimately related with the unchanged NO efflux from 
erythrocytes in those blood samples aliquots treated with LDL/HDL 
(Figure 2). 

As anion superoxide or methehemoglobin were not evaluated 
in the present study, the above reactions are possible explanations 
of unchanged concentration values obtained for the NO efflux and 
peroxynitrite. The signal transduction mechanisms needs further 
detailed studies.

In conclusion, the two additions of LDL/HDL concentrations 
to blood taken from healthy mans with normal profile of those 
lipoproteins cholesterol offer a higher range of values without affect 
erythrocyte ability to deform and rescue and deliver nitric oxide 
between the normal values. If these results could be extrapolated to 
in vivo situations the blood flow behavior at microcirculation will not 
be compromised when in conditions of a small increase of LDL/HDL 
lipoproteins.
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