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Abstract
In the vascular wall, hydrogen sulfide (H2S) inhibits inflammation, stimulates angiogenesis, and activates vasodilation. There are multiple sources of H2S in the 
vascular wall, but cystathionine gamma-lyase (CSE) within endothelial cells appears to produce most of the local, vascular H2S. Generated H2S acts on smooth 
muscle, endothelial, inflammatory, and adipose cells within the vascular wall and contributes to circulating levels of H2S and H2S metabolites. H2S signaling is 
generally beneficial with evidence that it inhibits inflammation and protects cells from oxidative stress. H2S also stimulates vasodilation and suppresses cytokine 
generation. Oxidized low- density lipoproteins (oxLDL) and hyperglycemia downregulate the pathway in cultured cells and disease states. Lower plasma and urine 
levels have been reported in human studies of diabetes, hypertension, and atherosclerosis so that suppression of this system may contribute to vascular disease. 
Activation of the system or supplementation with exogenous donors of H2S appears to protect from vascular and inflammatory diseases. Areas of active research 
include delineating signal transduction pathways both upstream of CSE and downstream of released H2S as well as defining more accurate and user-friendly ways to 
measure endogenous production.
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Introduction
Hydrogen sulfide’s (H2S) role in regulating the cardiovascular 

system is not completely defined, but H2S is rapidly gaining credentials 
as an important player in cardiovascular health. Recent publications 
describe pathways of H2S signaling and define some endogenous 
regulators of its production. Additional studies have shown that H2S 
produced throughout the body regulates many functions and this 
review will focus on recent work describing roles in the cardiovascular 
system, especially in the vascular wall.

Within the vascular wall, several pathways produce H2S. A recent 
study by Leskova and co-workers in cultured HUVECS observed that 
these cells take up exogenous thiosulfate for later release as free H2S 
while numerous other studies report H2S production in the vascular 
wall by cystathionine gamma-lyase (CSE) [1-7], cystathionine beta-
synthase (CBS) [8-10] and 3-mercaptopyruvate sulfurtransfurase 
(3-MST) [11,12]. Thus, the synthesis of this gasotransmitter is not 
completely defined and remains an area of active investigation as 
discussed below.

After synthesis and release, H2S has effects in the vascular wall that 
include inhibition of inflammation [13-17], stimulation of angiogenesis 
[18-22], increased production of endothelium-derived relaxing factors 
[23-25], activation of antioxidant pathways [26], and direct stimulation 
of vascular smooth muscle cell vasodilation [8,27,28]. These pathways 
will be discussed below along with a discussion of H2S production and 
activity in several cardiovascular diseases.

Synthesis of hydrogen sulfide

Hydrogen sulfide (H2S) is a very important signaling gas that 
is acquired through both diet and bacterial flora and also produced 
endogenously by a number of enzymes. The major enzymes responsible 
for the endogenous production of H2S are CBS, cystathionine γ-lyase 
CSE, and 3-MST. (Figure 1) These pyridoxal 5’-phosphate-dependent 
enzymes act as catalysts in the desulphuration of cysteine [29]. CSE 
mRNA, but not CBS, has been detected in endothelium-denuded aorta, 

mesenteric-, tail-, and pulmonary arteries, demonstrating that CSE is 
found in vascular smooth muscle cells [30]. Similarly, Shibuya et al. 
showed that CSE and CBS protein is not expressed in rat thoracic aortic 
endothelial cells. However, recent studies have demonstrated that CSE 
is in fact expressed in mesenteric endothelial cells [31]. Others have 
also demonstrated the presence of 3-MST in rat aortic endothelial cells 
and smooth muscle cells [32]. Thus, these enzymes are present in both 
smooth muscle and endothelial cells in the vasculature and more than 
one type of H2S synthesis enzyme may be co-expressed in some cells.

CSE proteins are localized in the cytosol under physiological 
conditions. In response to high calcium levels, CSE has been shown 
to translocate to the mitochondria where cysteine is metabolized, 
and H2S is produced [33]. However, much is still unknown about the 
regulation of this enzyme and its ability to move between intracellular 
compartments and this is an active area of research.

Sulfur exists in the body in several forms that are frequently 
categorized into one of three pools- free sulfide, acid labile sulfide, 
and reductant-labile or bound sulfane sulfur. Depending on the local 
environment (pH, temperature, etc.), sulfur can be liberated from 
each pool and modified to increase the bioavailability of specific sulfur 
species including H2S. In addition to occurring in the free state, H2S 
reacts to form species belonging to the acid labile or reductant- labile 
bound pool.

H2S is water-soluble and dissociates into H+ and HS- with 
further dissociation to S2- under alkaline conditions. These ions 
are referred to as free sulfide. Acid-labile sulfide pools include iron-
sulfur cluster-containing proteins. Acid-labile H2S is released in 
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buffer solutions at pH 5.4 or lower. Within cells, acid-labile H2S is 
present in the mitochondria at pHs between 7 and 8. One possible 
mechanism of this greater acid-labile H2S release in the mitochondria 
is by detachment via enzymes, but this has not been convincingly 
established [34]. Oxidation of H2S generates disulfide bonds between 
two sulfur atoms to generate hydrodisulfides, hydropolysulfides, and 
polysulfides, collectively known as reductant-labile bound sulfane 
sulfur [34,35]. Reducing agents such as tris(2-carboxyethyl) phosphine 
hydrochloride (TCEP) have been shown to induce the release of H2S 
from bound sulfur sulfane pools [35]. Ogasawara et al. were the first 
to investigate tissue distribution of bound and acid-labile H2S in vivo. 
They demonstrated that the majority of H2S in liver, kidney, brain, and 
spleen of Wistar rats is in the form of sulfane sulfurs, while acid-labile 
sulfur is the predominant form of H2S in the heart. The authors further 
investigated the subcellular distribution of sulfane sulfurs and acid-
labile sulfurs in cells from the kidney and liver and found that acid-
labile sulfur is predominantly found in the mitochondria while sulfane 
sulfurs predominate in the cytosol [36]. In another study, mouse aorta 
had the highest concentration of free H2S, while the heart and kidney 
contained the highest concentrations of acid-labile sulfides [37].

Inhibition of inflammation

Inflammatory pathways have been implicated in many 
cardiovascular diseases and pathways that limit inflammation have 
been shown to be protective on many levels as discussed in multiple 
recent reviews [38-41]. A part of the protective effect of H2S against the 
development and progression of cardiovascular disease is via inhibition 
of inflammation and oxidative stress. A recent study by Li et al. [4] 
observed that CSE KO mice have significantly higher plasma levels of 
homocysteine and are resistant to the protective effects of estrogen on 
the development of atherosclerotic lesions. However, administering 
exogenous H2S was not sufficient to restore responsiveness to estrogen 
in the CSE KO mice suggesting both the level and the location of H2S 

production are critical in the anti-inflammatory response to estrogen.

H2S suppresses macrophage-mediated inflammation by increasing 
heme oxygenase-1 expression in macrophages to inhibit nuclear factor-
kappa-b (NFκB)-dependent cytokine production [42]. A similar effect 
is observed in endothelial cells exposed to lipopolysaccharide (LPS), 
where suppression of endogenous H2S production leads to augmented 
cytokine production and cell hyperpermeability [43]. In this study 
by Bourque and co-workers, LPS decreased expression of CSE in 
cultured endothelial cells, while overexpression of CSE suppressed LPS 
activation of NFκB to protect cells from LPS-induced inflammation. 
Treating macrophages with oxidized low-density lipoproteins (ox-
LDL) is another in vitro model that has been used to demonstrate that 
CSE overexpression reduces cytokine generation and the resultant 
systemic inflammatory response [44]. H2S inhibition of cytokine 
generation is thought to protect the vascular wall from the initiation 
and growth of atherosclerotic lesions. In vivo studies have confirmed 
that CSE KO in ApoE KO mice increases lesion development and 
this is ameliorated by administration of exogenous H2S donors [45]. 
Furthermore, blood levels of H2S correlate inversely with the severity 
of atherosclerosis in chronic hemodialysis patients [46] and higher 
levels of urinary sulfates are associated with a lower risk of renal events 
in patients with type 2 diabetes [47]. This is corroborated in animal 
and cell-based studies of hyperglycemia showing that exogenous 
H2S prevents diabetic complications in rats [48-51] and mice [52-56] 
through improved vascular function, decreased cardiac fibrosis, and 
improved renal function.

Direct actions of H2S to protect endothelial cells from stress signals 
and enhance cell survival are in part responsible for this effect [9,32, 57-
61].  Studies by Xie et al. [62] aimed to uncover the mechanism by which 
H2S protects against oxidative damage in endothelial cells. Cell counting 
kit 8 (CCK8), Annexin V/PI staining and lactate dehydrogenase (LDH) 
release analysis showed that pretreatment with the slow releasing H2S 

Figure 1. Synthesis of Hydrogen Sulfide in Vascular Endothelial Cells. Hydrogen sulfide (H2S) can be synthesized in the vascular wall from cysteine by both cystathionine gamma lyase 
(CSE) and by cystathionine beta synthase (CBS). CSE is the primary pathway identified in most endogenous endothelial cells.
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donor, GYY4137, protected EA.hy926 endothelial cells from H2O2-
induced cell injury and death. The endothelial cells treated with H2O2 
had increased ROS formation and decreases in oxygen consumption 
and ATP production and pretreatment with GYY4137 prevented these 
changes. Notably, when expression of the mitochondrial enhancer 
of ROS scavenging, NAD-dependent histone deacetylase sirtuin-3 
(SIRT3) [42, 55] was reduced by siRNA, the preventive effect of H2S 
against H2O2-induced damage was abolished. Finally, luciferase 
reporter assays revealed that H2S increases expression of SIRT3 and 
superoxide dismutase 2 (SOD2). These findings demonstrate that H2S 
improves mitochondrial function and protects endothelial cells from 
cytotoxicity to enhance cell survival. Others have also observed that H2S 
protects mitochondrial function from oxidative damage [54, 61]. Thus, 
both endogenous and exogenous H2S are able to prevent inflammation 
and oxidative damage through multiple pathways and this prevention 
contributes to protection from disease related morbidity. (Figure 2)

Vasodilation

Hydrogen sulfide induces vasodilatory responses via endothelium-
independent and endothelium-dependent mechanisms. Zhao et al. 
examined the vasoactive effects of H2S in rat aortic tissues [63-70]. The 
report shows a dose-dependent inhibition of H2S-induced vasodilation 
of rat aortic rings by the KATP channel inhibitor, glibenclamide. In 
isolated smooth muscle cells, H2S increased KATP current amplitudes 
and hyperpolarized the cells similar to the responses to the KATP 
channel agonist, pinacidil and glibenclamide reversed the H2S-induced 
responses.

This report demonstrated that H2S can activate VSMC KATP channels 
to induce membrane hyperpolarization and vasodilation. In a later 
study, Zhao et al. [69] examined the actions of H2S on the endothelium 
to cause vasorelaxation. In this study, removal of the endothelium with 
saponin did not affect maximum H2S-induced relaxation of rat aortic 
rings but require higher concentrations of H2S to elicit a response 
suggesting the endothelium is a potential target of H2S. Other studies, 
however, have observed a significant role of the endothelium in H2S-
induced vasodilation. Our group reported a dramatic loss of sodium 

hydrogen sulfide (NaHS)-induced dilation in endothelium-denuded 
mesenteric arteries [21]. NaHS-induced dilation is also abrogated in 
arteries after luminal application of the BKCa inhibitor, iberiotoxin 
(IbTX). This study identified EC-BKCa as targets of H2S and support 
an endothelium-dependent mechanism of H2S-induced vasodilation.

Mustafa et al. also reported that H2S is an endothelial-derived 
hyperpolarizing factor (EDHF) [36]. Their studies in arteries and 
cultured endothelial cells found that acetylcholine hyperpolarized cells 
from wild-type mice but did not affect cells from mice lacking CSE.

Additionally, arteries from the CSE+/+ mice did not dilate to H2S 
in the presence of apamin and charybdotoxin, inhibitors of small and 
intermediate conductance calcium-activated potassium channels (SK 
and IK) respectively. These findings identified H2S as a physiological 
EDHF. (Figure 3)

The role of H2S as an EDHF is not limited to the sulfhydration 
of potassium channels. In fact, H2S also enhances production and 
vascular signaling of another well described EDHF, nitric oxide (NO) 
[22, 5]. Chen et al. [8] examined the signaling pathways of H2S and NO 
in human EA.hy926 endothelial cells. They report a significant increase 
in the NO producing enzyme, endothelial nitric oxide synthase (eNOS) 
and in NO levels in response to the hydrogen sulfide donor NaHS. H2S-
induced increases in eNOS expression has also been observed by others 
[31,35,41]. The enhancement of NO production by H2S is not limited 
to eNOS expression. Multiple studies have shown direct activation of 
eNOS by H2S. Huang et al. [19] found increased phosphorylation of 
the activating serine residue eNOSS1177 following NaHS incubation. 
King et al. [23] also that knockout of CSE reduced phosphorylation 
of eNOSS1177 while increasing phosphorylation of an inhibitory site 
eNOST495. These changes correlated with impaired eNOS function 
in the CSE KO mice. These findings highlight the dual effect of H2S 
to enhance the activating phosphorylation and reduce the inhibiting 
phosphorylation state of eNOS. In addition to enhancing the activity of 
eNOS via phosphorylation, H2S can directly stabilize the dimeric state 
of eNOS to enhance NO production as examined by Altaany et al. [3]. 
In their studies, NaHS increased eNOS dimer/eNOS monomer ratio, 

Figure 2. Hydrogen sulfide (H2S) acts on the vasculature throughout the body to elicit protective and beneficial actions. In addition, it has direct effects on cardiac muscle [1] and on renal 
tissues [22] that haved been recently reviewed.
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Tissue Species Source-Effect of H2S References

Kidney Mice CBS- increases amino acid reabsorption,
protects from ischemia/reperfusion injury [57,58]

Kidney Rat Donor: inproved endothelial dilation, increased eNOS phosphorylation, increases
GFR [59,60]

Adipocytes Mice CSE-promotes glucose uptake and lipid
storage [61]

VSMC Mice CSE-inhibits IP3 receptor Ca2+ release [62]

Endothelial Cells (EC) Mice, Human umbilical vein 
EC, rat aortic EC

CSE-reduces eNOS phosphorylation and activity, contributes to acetylcholine-
induced dilation, Donor: sulfhydrates Kir 6.1 channels, upregulates SIRT3 pathway, 
increases NO production, blocks NFkB activation, decreases atherosclerotic plaque
formation

[43,45,63-68]

Mitochondria Mice
Donor-Induces nrf2 to upregulate antioxidant pathways, increases mitochondrial 
electron transport (3MST),
prevents ROS damage

[69,70]

Liver Mice High fat diet increases CSE and CBS expression, elevates homocysteine
metabolism, gluconeogenesis [71,72]

Cerebral
circulation Mice Donor-Protects from ischemia [73]

Cerebral
circulation Rats Donor: Constricts basilar artery [74]

Heart Frog Donor-Decreased stroke volume and
phosphorylated eNOS, [75]

Heart Rat
Donor-Decreased stroke volume and phosphorylated eNOS, ERK and AKT 
phosphorylation to protect from
ischemia/reperfusion, decreased fibrosis

[75,76]

Pancreas Rat CBS-Releases Ca2+ from acinar cells [77]

Macrophage Mouse CSE-Increases HO-1 expression, inhibits
iNOS activity, increased sulfhydration of KEAP1 to activate Nrf2 [42,52]

Table 1. Source of H2S Effect in different Species Tissues.

Figure 3. Hydrogen Sulfide Acts as an Endothelial Dilating Factor. Hydrogen sulfide (H2S) is synthesized in vascular endothelial cells and then difuses out of the cell to act in a paracrine 
manner on adjacent vascular smooth muscle cells or in an autocrine manner on endotheial cells. It has been shown to activate potassium channels in both cell types contributing to smooth 
muscle cell relaxation and subsequent vasodilation.

demonstrating the ability of H2S to stabilize and enhance activity of 
eNOS. Taken together, H2S increases eNOS expression, stability, and 
activation, ultimately leading to elevate NO production.

Conclusion 
Understanding of how and where H2S acts in the vasculature 

is much greater than it was 10 years ago, including the discovery of 
new pathways for synthesis, additional vascular targets, and increased 
understanding of the biochemistry and metabolism in the vascular 
wall. It is clear that there are many parallels to the nitric oxide system 
as well as some important    differences. That is, both are synthesized 

within vascular endothelial cells from an amino acid precursor and act 
on both autocrine and paracrine targets to protect the vascular wall 
from oxidative stress and to regulate local blood flow. However, it is 
not clear if H2S synthesis is elevated by acute receptor activation similar 
to receptor or flow activation of eNOS or if regulation of the enzyme 
is primarily at the transcriptional level, more analogous to activation 
of endothelin generation.  In addition, plasma levels of H2S have not 
been clearly demonstrated to reflect tissue levels and more information 
is needed to determine appropriate ways to evaluate H2S-producing 
enzyme activity of the system. This is in part due to the high volatility 
of H2S, which is rapidly depleted into the headspace of solutions and 
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is also subject to rapid oxidation. Therefore, accurate analysis of both 
tissue and plasma levels of H2S is one of the greatest challenges in 
better understanding the role of this compound under different disease 
conditions. Finally, much has been elucidated in the H2S signaling 
pathways, but questions remain on where and how production 
is stimulated, what are physiologically relevant tissue and plasma 
concentrations and what are the cellular targets for modification by 
H2S. Future studies are expected to continue to clarify the roles of this 
important gasotransmitter in health and disease. Source of H2S Effect 
in different Species Tissues is given in Table 1. [71-84]
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