Short Communication

The systemic inflammatory response syndrome post two different kinds of atrial fibrillation approaches ablation

Márcio Galindo Kiuchi^{1*} and Shaojie Chen²

¹Division of Cardiac Surgery and Artificial Cardiac Stimulation, Department of Medicine, Hospital e Clínica São Gonçalo, São Gonçalo, RJ, Brazil ²Evidence-based Medicine Program, Department of Cardiology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

The pulmonary veins (PV) have been identified as the source of triggers initiating paroxysmal atrial fibrillation (AF) [1]. Contemporary catheter ablation techniques either use the electrical isolation of the limited segmental ablation at the PV ostia (venous-atrial junction) [2,3] or extensive burning approaches with the circumferential isolation of atrial tissue in the adjacent left atrium (LA) [4-6] sometimes supplemented by linear lesions between defined anatomical structures to interrupt macro reentrant circuits [7,8]. Identifying the impact of additional LA tissue ablation in modifying the maintaining substrate in the physiopathology AF process of persistent and permanent AF, even more, extensive ablation procedures have been supported, aiming LA strategic zones branded by complex fractionated potentials [9,10]. These extensive and extremely complex ablation designs are related with rare but overwhelming complications, as atrium-esophageal fistula [11,12] or vagal nerve damage, provoking acute pyloric spasm and gastric hypomotility [13], consequential from extra cardiac penetration of ablative power. A post cardiac injury syndrome has been reported, both following linear radiofrequency ablation in the LA for AF [14], as well as after catheter ablation for treat other arrhythmias [15], featuring a systemic inflammatory response syndrome (SIRS). This study was conducted at the Hospital e Clínica São Gonçalo, Rio de Janeiro, Brazil, where patients were recruited from the Artificial Cardiac Pacing Department. The study was approved by the Hospital e Clínica São Gonçalo Ethics Committee and was conducted in accordance with the principles of the Declaration of Helsinki. All patients signed written informed consent prior to study inclusion. The results are expressed as a mean and standard deviation for normally distributed data and as median with interquartile range otherwise. All statistical tests were two-sided. Comparisons between two-paired values were performed with the paired t-test in cases of a Gaussian distribution or by the Wilcoxon test otherwise. Comparisons between more than twopaired values were made by repeated-measures analysis of variance or by Kruskal-Wallis analysis of variance as appropriate, complemented by a post-hoc test. Categorical variables were compared with Fisher's exact test. A P-value <0.05 was considered significant. Correlations between two variables were performed by Pearson's chi-square test in case of a Gaussian distribution and with the Spearman correlation test otherwise. All statistical analyses were performed using the program Graphpad Prism v 7.0 (Graphpad Software, La Jolla, CA, USA).

We reported in this study 469 cases of AF ablation, performed from 2010 to 2016, being 397 cases of PV isolation only, and 72 extensive ablation procedures to treat more complex cases of AF. The general features of these patients are displayed in Table 1. From the total number of procedures, 18 cases developed SIRS, 3 (1%) patients after

PV isolation only and 15 (21%) subjects after extensive AF ablation, as shown in Figure 1. Comparing both groups, the relative risk to develop SIRS after the procedure is 5.242 higher in the extensive ablation group, with 95% Confidence Interval (CI) ranging from 2.225 until 14.980, and P<0.0001. The patients' features during SIRS treatment post the ablation procedure in both groups are demonstrated in Table 2. The correlation between the PV isolation only and the number of ablated spots is weak: r=0.1888, 95%CI=0.092 to 0.282 and P=0.0002. However, the correlation between the extensive ablation and the number of ablated spots is stronger than the first one: r=0.7232, 95%CI=0.591 to 0.818 and P<0.0001. The Receiver Operating Characteristic (ROC) curve from the number of ablated spots presented an area under the ROC curve: 0.9726, 95%CI: 0.9221 – 0.9986, P<0.0001, sensitivity: 94%,

Figure 1. From the total number of procedures, 18 individuals developed SIRS, being 3 (1%) patients after PVI only and 15 (21%) subjects after extensive AF ablation, P<0.0001; AF, atrial fibrillation; PVI, pulmonary vein isolation; SIRS, systemic inflammatory response syndrome.

Correspondence to: Márcio Galindo Kiuchi, MD, MSc, PhD, Division of Cardiac Surgery and Artificial Cardiac Stimulation, Department of Medicine, Hospital e Clínica São Gonçalo, Rua Cel. Moreira César, 138 - Centro, São Gonçalo, Rio de Janeiro 24440-400, Brazil, Tel/Fax: +55 (21) 26047744; E-mail: marciokiuchi@ gmail.com

Key words: atrial fibrillation, pulmonary vein isolation, extensive ablation, systemic inflammatory response syndrome

Received: October 22, 2016; Accepted: November 14, 2016; Published: November 18, 2016

Parameters	PVI	Extensive ablation	P value
N	397	72	
Age, years	58.3 ± 13.9	61.6 ± 17.0	0.0745
Body mass index, kg/m ²	28.0 ± 3.6	28.6 ± 4.1	0.2038
Male gender (%)	253 (64%)	40 (56%)	0.1891
White ethnicity (%)	297 (75%)	50 (69%)	0.3810
Hypertension (%)	300 (76%)	60 (83%)	0.1736
Hyperlipidemia (%)	272 (69%)	56 (78%)	0.1259
Type 2 Diabetes Mellitus (%)	150 (38%)	20 (28%)	0.1115
Coronary artery disease (%)	90 (23%)	12 (17%)	0.2813
Atrial fibrillation	397 (100%)	72 (100%)	1.0000
Creatinine, mg/dL	0.90 ± 0.15	0.93 ± 0.17	0.1270
eGFR, mL/min/1.73 m ²	94.3 ± 12.5	91.6 ± 13.7	0.0974
Albumin/creatinine ratio, mg/g	12.5 ± 10.6	11.7 ± 8.5	0.5449
Antihypertensive			
ACE-inhibitors/ARB (%)	260 (65%)	51 (71%)	0.4181
β blockers (%)	290 (73%)	51 (71%)	0.7738
Diuretics (%)	250 (63%)	48 (67%)	0.5962
DHP calcium channel blockers (%)	177 (45%)	36 (50%)	0.4408
Mean 24-hour ABPM, mmHg	$139\pm11/94\pm4$	$141\pm12/95\pm6$	0.1358/0.1306
Echocardiographic parameters			
Indexed LA volume (mL/m ²)	28.6 ± 3.5	41.4 ± 6.0	< 0.0001
IST (mm)	9.1 ± 1.8	9.4 ± 1.5	0.1834
LVPWT (mm)	10.6 ± 1.9	11.0 ± 2.3	0.1129
LVEF, Simpson (%)	62.5 ± 8.5	61.9 ± 8.1	0.5792
LEVDD (mm)	50.8 ± 4.6	51.7 ± 5.3	0.1367
LEVSD (mm)	32.5 ± 5.5	33.4 ± 7.7	0.2333
LV mass index (g/m ²)	167.4 ± 17.2	170.9 ± 23.0	0.1340

Table 1. Patients' baseline characteristics

Data are presented as mean \pm standard deviation or n (%). ABPM, ambulatory blood pressure measurements; ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; DHP, dihydropyridine; eGFR, estimated glomerular filtration rate; IST, interventricular septum thickness; LA, left artium; LV, left ventricular; LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; LVESD, left ventricular end-systolic diameter; LVPWT, left ventricular posterior wall thickness. N, number of patients; PVI, pulmonary vein isolation.

specificity: 99%, cutoff point of ablated spots to occur the SIRS episode after the procedure: >191 points.

In conclusion, patients submitted to an extensive radio frequency ablation to treat AF are at higher risk than subjects underwent PV isolation only, for a possibly SIRS development post procedure. With supportive therapy, including mechanic ventilation, corticosteroids and diuretics administration this serious complication seems to be treatable, with resolution of the syndrome surrounded by 15 days.

References

- Haïssaguerre M, Jaïs P, Shah DC, Takahashi A, Hocini M, et al. (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339: 659-666. [Crossref]
- Haïssaguerre M, Shah DC, Jaïs P, Hocini M, Yamane T, et al. (2000) Electrophysiological breakthroughs from the left atrium to the pulmonary veins. *Circulation* 102: 2463-2465. [Crossref]
- Arentz T, von Rosenthal J, Blum T, Stockinger J, Bürkle G, et al. (2003) Feasibility and safety of pulmonary vein isolation using a new mapping and navigation system in patients with refractory atrial fibrillation. *Circulation* 108: 2484-2490. [Crossref]
- Pappone C, Rosanio S, Oreto G, Tocchi M, Gugliotta F, et al. (2000) Circumferential radiofrequency ablation of pulmonary vein ostia: A new anatomic approach for curing atrial fibrillation. *Circulation* 102: 2619-2628. [Crossref]
- Verma A, Marrouche NF, Natale A (2004) Pulmonary vein antrum isolation: Intracardiac echocardiography-guided technique. J Cardiovasc Electrophysiol 15: 1335-1340. [Crossref]

Table 2. Patients' features during SIRS treatment post the ablation procedure.

Parameters	PVI	Extensive ablation	P value
N	3	15	
Clinical parameters			
Dyspnea	3 (100%)	15 (100%)	1.0000
Temperature, °C	38.6±0.8	39.5 ± 0.9	0.1370
Symptom onset, hours	28.0 ± 18.3	18.4 ± 6.2	0.1000
Pulmonary congestion	3 (100%)	15 (100%)	1.0000
Need for mechanical ventilation	0 (0%)	11 (73%)	0.0429
Corticosteroids onset	3 (100%)	15 (100%)	1.0000
Diuretic onset	3 (100%)	15 (100%)	1.0000
Complete recovery, days	9.5 ± 2.8	10.7 ± 4.0	0.5592
Laboratory tests			
Leukocytes, per µL	$17,797 \pm 4,551$	$22,659 \pm 5,902$	0.1999
C-reactive protein, mg/dL	31.7 ± 9.3	33.8 ± 8.4	0.7042
Negative blood cultures	3 (100%)	15 (100%)	1.0000
Negative urine cultures	3 (100%)	15 (100%)	1.0000
Creatinine, mg/dL	1.53 ± 0.25	1.97 ± 0.41	0.0985
Chest tomography			
Bilateral edema	3 (100%)	15 (100%)	1.0000
Pleural effusion	0 (0%)	11 (73%)	0.0429
Electrocardiogram			
Sinus rhythm	3 (100%)	15 (100%)	1.0000
Echocardiogram			
LVEF by Simpson's method, %	57.0 ± 2.6	55.1 ± 4.7	0.5185
Presence of pericardial effusion	0 (0%)	0 (0%)	1.0000
Left atrium angiotomography			
Presence of pulmonary vein stenosis	0 (0%)	0 (0%)	1.0000
Ablation procedure			
Mean number of ablated spots	196.0 ± 4.6	228.9 ± 50.0	0.2831
Total procedure time, min	256.7 ± 40.4	243.3 ± 42.4	0.6236
Total fluoroscopy time, min	72.0 ± 7.2	60.7 ± 17.1	0.2876
3D electro-anatomical mapping system use	3 (100%)	15 (100%)	1.0000
Radio frequency power, W	36.7 ± 2.9	37.3 ± 4.6	0.8136
Catheter irrigation, mL	$1,900 \pm 100$	$2,123 \pm 243$	0.1443
Values are presented as mean \pm SD or %. L systemic inflammatory response syndrome.	VEF, left ventric	ular ejection frac	tion; SIRS

- Ouyang F, Bansch D, Ernst S, Schaumann A, Hachiya H, et al. (2004) Complete isolation of left atrium surrounding the pulmonary veins: New insights from the Double-Lasso technique in paroxysmal atrial fibrillation. *Circulation* 110: 2090-2096. [Crossref]
- Oral H, Scharf C, Chugh A, Hall B, Cheung P, et al. (2003) Catheter ablation for paroxysmal atrial fibrillation: Segmental pulmonary vein ostial ablation versus left atrial ablation. *Circulation* 108: 2355-2360. [Crossref]
- Jaïs P, Hocini M, Hsu LF, Sanders P, Scavee C, et al. (2004) Technique and results of linear ablation at the mitral isthmus. *Circulation* 110: 2996-3002. [Crossref]
- Nademanee K, McKenzie J, Kosar E, Schwab M, Sunsaneewitayakul B, et al. (2004) A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. *J Am Coll Cardiol* 43: 2044-2053. [Crossref]
- Haissaguerre M, Sanders P, Hocini M, Takahashi Y, Rotter M, et al. (2005) Catheter ablation of long-lasting persistent atrial fibrillation: Critical structures for termination. *J Cardiovasc Electrophysiol* 16: 1125-1137. [Crossref]
- Pappone C, Oral H, Santinelli V, Vicedomini G, Lang CC, et al. (2004) Atrioesophageal fistula as a complication of percutaneous transcatheter ablation of atrial fibrillation. *Circulation* 109: 2724-2726. [Crossref]
- Scanavacca MI, D'Avila A, Parga J, Sosa E (2004) Left atrial-esophageal fistula following radiofrequency catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 15: 960-962. [Crossref]
- Shah D, Dumonceau JM, Burri H, Sunthorn H, Schroft A, et al. (2005) Acute pyloric spasm and gastric hypomotility: An extracardiac adverse effect of percutaneous radiofrequency ablation for atrial fibrillation. JAm Coll Cardiol 46: 327-330. [Crossref]

- Wood MA, Ellenbogen KA, Hall J, Kay GN (2003) Post-pericardiotomy syndrome following linear left atrial radiofrequency ablation. *J Interv Card Electrophysiol* 9: 55-57. [Crossref]
- Turitto G, Abordo MG Jr, Mandawat MK, Togay VS, El-Sherif N (1998) Radiofrequency ablation for cardiac arrhythmias causing postcardiac injury syndrome. *Am J Cardiol* 81: 369-370. [Crossref]

Copyright: ©2016 Kiuchi MG. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.