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Abstract
The relationship between single nucleotide polymorphisms (SNPs) and phenotypes is noisy and cryptic due to the abundance of genetic factors and the influence 
of environmental factors on complex traits, which makes the idea of applying artificial neural networks (ANNs) as universal approximates of complex functions 
promising.

In this study, we compared different ANN architectures and input parameters to predict the adult length of Pacific lampreys, which is the primary indicator of their 
total migratory distance. Feedforward and simple recurrent network architectures with a different range of input parameters and different sizes of hidden layers 
were compared. Results indicate that the highest performing ANN had an accuracy of 67.5% in discriminating between long and short specimens. Sensitivity and 
specificity were 62.16% and 70.73%, respectively.

Our results imply that feedforward ANN architecture with a single hidden neuron is enough to solve the problem of specimen classification. Nonetheless, while 
ANNs are useful at approximating functions with unknown relationships in the case of SNP data, additional work needs to be performed to ensure that the chosen 
SNP markers are related to functional regions related to the examined trait, as the use of non-specific markers will result in the introduction of noise into the dataset.
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Background
Migratory behavior is the long-distance movement of individuals, 

which mostly occurs on a seasonal basis. As one of the most well-known 
and studied phenomena in behavioral biology, migratory behavior 
can be observed in most animal species. Animals with unpredictable 
migratory patterns represent a challenge to ecologists working on 
effective population management and conservation, as their movement 
patterns are influenced by multiple events spread across a wide 
geographic range, often encompassing international borders [1]. The 
signals that start migratory behavior are largely environmental and 
are usually related to the length of day in bird species, or the water 
temperature in fish migration. However, there is evidence that genetics 
plays an important role in the migratory predisposition of individuals 
[2]. The genetic molecular mechanisms regulating migratory behavior 
have already been studied in birds, and genes that control such behavior 
have been discovered [3]. 

Single nucleotide polymorphisms (SNPs) have previously been 
used to predict a variety of traits in numerous species, ranging from 
quantitative [4,5], to discrete traits, such as eye color [6]. SNPs are single 
base sequence variations between individuals at a specific position in 
the genome. They are abundant in the genome of humans and animals, 
and are commonly used to differentiate between individuals of a 
species [7].

The Pacific lamprey (Entosphenus tridentatus) has recently been 
studied [8] regarding SNP markers that could be used to predict the 

migratory behavior of an individual. In that study, three SNP markers 
that can be used as efficient predictors of migratory behavior in this 
species have been elucidated. The main characteristic found to be 
indicative of the migratory behavior of such individuals was the 
total body length, as it was noticed that shorter fish are less likely to 
exhibit long distance migratory behavior [8]. Pacific lampreys have 
an important role in the ecosystem, serving as a buffer for salmon 
from predators and acting as an important sustenance food and 
cultural symbol for many tribes living along the Pacific coast [9]. 
Pacific lampreys are a highly dispersive, anadromous type of fish, 
which lacks a strict homing site. Instead, Pacific lampreys seem to 
locate their spawning sites based on pheromonal cues [10,11]. This 
makes the ability to predict their movements and migratory behavior 
both challenging and important from a conservatory perspective. The 
population of Pacific lampreys is on the decline due to environmental 
issues, inadequate dam design impeding their spawning migration, and 
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prejudice caused by the popular opinion that lampreys are an invasive 
parasitic species, despite being indigenous to the Pacific coastal area 
[12,13]. Their migratory behavior has previously been studied using 
passive integrated transponder (PIT) tagging, where the correlation 
with migratory distance and length was observed in adult specimens [14].

Artificial neural networks are attractive for applications in genetics 
[15-18], as the relationship between SNPs and phenotypes is noisy and 
cryptic due to the abundance of genetic factors and the influence of 
environmental factors on complex traits [19,20]. They are applicable to 
various biological problems for categorization, such as discriminating 
between wild and domesticated populations of salmon and trout, as 
well as regression problems, such as predicting the sulphur removal by 
Acidithiobacillus species [21,22]. 

This study compares the predictive ability of two different neural 
network architecture types, a varying number of hidden nodes, as well 
as different input parameters and training data distributions. The target 
parameter is the total adult body length of individual Pacific lampreys, 
and is based on a previously published [8].

Methods
For problems of this type, the most frequently used ANNs are linear 

feedforward, and recurrent (feedback architecture), such as the Elman 
neural network [23-25]. Therefore, we have made a direct comparison 
of the neural network types on identical datasets to determine which 
is most suitable for predicting a phenotypical trait based on SNP data.

Feedforward networks

Single layer feedforward networks are frequently used for regression 
problems and forecasting. A linear feedforward neural network is often 
sufficient to properly perform classification tasks and is also applicable 
to regression tasks [26-28]. They are models in which information 
travels in one direction without any loops or cycles between the input 
and output. Neurons are assigned random weights at the beginning, 
and the sum of the products (linear combination) of the weights and 
inputs is calculated at each neuron. If the value obtained is greater than 
a given threshold value, the neuron “fires” and assumes the activated 
value. If the threshold is not reached, it assumes a deactivated value. The 
training of a network depends on outputs obtained. In the case of using 
the delta rule, the error is calculated between the predicted and target 
data, and the weights of the neurons are adjusted based on the error. 
This “backpropagation” process is repeated until a sufficiently low level 
of error is reached, or until a predefined cutoff point is reached [29]. A 
representation of a feedforward neural network with one neuron in the 
hidden layer, and nine input neurons is shown in Figure 1.

In this study, the input to each hidden neuron is a linear 
combination of a vector of weights, input SNP variants and a “bias” 
weight for the feedforward networks. The input to each neuron is 
obtained as represented in Equation 1. The result is then transformed 
via the sigmoid activation function ft  (Equation 2) to produce the 
hidden neurons output value.
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The output layer consists of neurons as well. The inputs to neurons 
in the output layer is a linear combination of outputs of neurons in 
the hidden layer, weights of the output layer q, and an output layer 
bias neuron b. The value obtained is transformed by the linear 
transformation function pt(.) to generate the value of the predicted 
adult length of an individual, as presented in Equation 3.
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During the training of the neural network, the optimal weights are 
established using the Levenberg-Marquardt algorithm (LMA), which 
is commonly used for training ANNs [30,31], and which minimizes 
the error between the predicted and the actual weight [32]. This is 
performed by using a process of backpropagation that continues until 
an optimal mean error squared level is reached or stopping criteria was 
fulfilled.

Elman neural networks

Elman neural networks have feedback architecture and are also 
referred to as recurrent neural networks. This architecture, in addition 
to the layers found in the feedforward network architecture, also has 
a “context” layer which saves the unweighted outputs of the previous 
iterations hidden layer, thus giving the neural network a sort of short 
term memory, or context that feedforward networks do not possess 
[33]. Elman networks are identical to feedforward ones in their first 
iteration, due to no context layer being present. After the first iteration, 
the context layer is formed by the previous iterations of the hidden 
layer, thus resembling a three-layer feedforward network, with one layer 
being a copy of the previous iterations hidden layer. A representation 
of an Elman network with one hidden neuron, and nine input neurons 
is shown in Figure 2.

Equation 4 was used to calculate the hidden neuron values in the 
Elman networks; it is very similar to Equation 1 with the only difference 
being the addition of the context layer inputs.
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Figure 1. Single layer Feedforward neural network architecture with nine inputs, one neuron in hidden layer, and one neuron in output layer. 

Figure 2. Elman (Recurrent) neural network architecture with nine inputs, one neuron in hidden layer, and one neuron in output layer.

The sigmoid function (Equation 2) was used as the activation 
function in the hidden layer, with the linear transformation function 
(Equation 3) being used as the activation function in the output layer.

The Elman network was trained using the Gradient Descent with 
Momentum & Adaptive Learning Rate training method, which is a 
backpropagation algorithm commonly used for training recurrent 
ANNs [34]. The training continued until a minimal level of error was 
reached, or stopping criteria was fulfilled.

Dataset creation

A dataset containing 797 individuals that were genotyped for 94 
total markers has been collected [8], with additional data describing 
their size, weight and migratory distance travelled. Three of those 
markers were determined to have a correlation with total adult length, 
and were found to be linked to genes with association to morphological 
traits (Table 1). 

In order to compare the effects of SNP markers that have no direct 
correlation to the predicted trait, we have constructed three separate 
datasets. One dataset contained only the SNP markers that were 
determined to be related to adult length (dataset S3). A second dataset 
containing the S3 SNPs and seven arbitrarily chosen SNPs (S10), and 
a dataset containing all SNPs included in the study (S94). Since SNPs 
cannot be represented as continuous variables, and since each SNP 
has multiple possible variants in which it appears, each variant was 
used as a flag value, totaling in the neural networks having three times 
the number of SNPs as input neurons. An exception was the S94 dataset, 
which contained two SNPs that had two variants instead of three, resulting 
in a total of 280 input neurons. An example of this is shown in Table 2. The 
target value in the datasets was the total length of the individual. 

In order to investigate what effect the distribution of the test 
data has on the training of the neural network, we have devised three 
different schemes of splitting the data, H, T and Q, described in Table 3. 
In total, this resulted in nine different input and test datasets.
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The output value of the ANNs is the length of the individual 
expressed in millimeters. This output value is normalized to values 
between 0 and 1 (Equation 5), as this is a standard procedure done in 
order to obtain better initial weights and make the training faster [29].

Real length-Minimum length in datasetNormalized length=
Maximum length in dataset-Minimum length in dataset

In Equation 5, the minimum length of fish in the training dataset 
is 480 mm, while the maximum length of fish in the dataset is 770 mm. 

Neural network training and performance measurement

We examined the accuracy and performance of neural networks that 
employed the feedforward architecture with the Levenberg-Marquardt 
training method, and the recurrent neural network architecture, 
also known as Elman architecture, with the Gradient Descent with 
Momentum and Adaptive Learning Rate training algorithm. Both 
are popular optimization algorithms used in the ANN domain, and 
are the default algorithms used in MATLAB for feedforward, and 
Elman networks, respectively [35]. The number of hidden neurons, as 
well as different input values, and training dataset distributions were 
examined. The number of neurons in the hidden layer was repeatedly 
increased by a single neuron, starting at one and continuing to twenty 
hidden neurons, which we have chosen as an arbitrary stopping point. 

Mean absolute error (MAE) and Pearson’s correlation coefficients 
were used to measure the ANN predictive performance. The Mean 
absolute error was calculated based on equations (6) and (7).
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fi - predicted value,

yi - actual value,

ei - error value,

n - number of samples.

Pearson’s correlation coefficient of the predicted and actual values 
(r) was calculated as a measure of linearity between input and output 
values using Equation 8, where n is the total number of samples (Table 4).
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Each neural network was trained using 600 samples, and a 70:30 
data split, with 70% of the data being used for training, and 30% being 
used for validation. The sampling was random in order to avoid any 
selection bias in the dataset. Performance testing was done with 197 
samples that were not used during the training phase. This is a common 
data splitting scheme, frequently used in ANN applications [36].

This process was repeated for each network type using the three 
datasets, and three different data splits for each dataset, resulting in a 
total of 360 neural networks analyzed in this study. Data preprocessing 
and analysis were performed using the R programming language [37], 
while the construction and training of neural networks was performed 
using MATLAB [38].

Results
The combined results of this study can be seen in Figure 3. It plots 

the correlation of the target and predicted parameter for all datasets and 
data splits. The individual plots (a-f) represent the correlations of the 
target and predicted parameters for the different data splits. The first 
row (a-c) represents the results of using the Elman architecture, while 
the second row (d-f) represents the results of using the feedforward 
architecture. 

Predictive ability of different ANN architectures

In the case of Elman networks, no improvement was observed 
with the increase of the number of neurons in the hidden layer. Their 
performance decreased rapidly once the hidden layer exceeded three 
neurons, especially in the case of noisy datasets, while in the case of 
noise-free ones, the performance stays consistent (Figure 3a-3c). The 
explanation for such a fall in accuracy is that the increase in hidden 
nodes resulted in overfitting, that is, the neural network memorized the 
training data, but did not learn the underlying rules that would enable 
it to predict the length of new samples [35].

Feedforward networks exhibited no great changes in their 
performance with the increase of neurons in the hidden layer in the 
S3 dataset. However, in the noisy datasets S10 and S94, the increase of 
the number of neurons served to handle the noisy inputs and increased 
performance. This is most evident in S94, where the highest performing 
feedforward neural networks had two, seven, and four neurons in the 
hidden layer, respectively (Figure 3d-3f). 

In a general comparison of Elman and feedforward neural network 
architectures, Elman shows more consistency in its predictive ability 
when the number of neurons is changed in the hidden layer. However, 
it should be noted that the highest correlation was obtained by a single 
neuron feedforward network utilizing the S3 dataset with the Q data 
splitting scheme. 

Predictive ability according to training data

The S3 dataset consistently provided the best results as the SNPs 
used in this scenario have been previously correlated to the target 
variable, thus providing a noise-free dataset, and being ideal input 
variables. The S10 dataset performed comparably to the S3 dataset in 
neural networks with a small hidden layer, while the performance of 
the S94 dataset was erratic at best. The Q data splitting scheme (Table 3) 
provided the best results, despite the performance of neural networks 
worsening as the size of the hidden layer started to exceed ten neurons. 
The H data split was a close second, while the T data split exhibited 
the worst performance of the three, regardless of number of hidden 
neurons or network architecture used. 

SNP Marker Morphological Trait

Etr_5317
Localizes to DYM gene which encodes 
a protein associated with normal skeletal 
development and brain function.

Etr_4281

aligned to the human homologue PCDH15 
that encodes a membrane protein which 
functions to mediate calcium-dependent 
cell-cell adhesion.

Etr_1806 Does not appear to localize within any 
described gene region.

Table 1. Association of SNP markers to morphological traits.

Etr_1806 Etr_1806_aa Etr_1806_ag Etr_1806_gg
AA 1 0 0
AG 0 1 0
GG 0 0 1

Table 2. Coding of input parameters of ANN.
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Figure 3. Training performances of Feedforward and Recurrent Neural Network architectures with different dataset distribution and number of neurons in the hidden layer. The first row 
(a-c) represents the Elman networks, the second row (d-f) represents feedforward networks. The blank squares are the S3 dataset networks, S10 is represented by blank circles, while S94 is 
represented by blank triangles. The first column is split according to the H scheme, second column is the T scheme, while the third column is the Q scheme. The vertical axis is the Pearsons 
r coefficient, while the horizontal axis represents the number of neurons in the hidden layer.

Training dataset
H split T split Q split

Number of samples Length Number of samples Length Number of samples Length
300 <660 mm 200 ≤ 610 mm 150 <610 mm
300 ≥ 660 mm 200 >610 mm and ≤ 655 mm 150 >610 mm and ≤ 650 mm
    200 >655 mm 150 >650 mm and ≤ 685 mm
        150 >685 mm

Testing dataset
H split T split Q split

Number of samples Length Number of samples Length Number of samples Length
145 <660 mm 6 ≤ 610 mm 56 less than 610 mm
52 ≥ 660 mm 39 >610 mm and ≤ 655 mm 89 >610 mm and ≤ 650 mm
    152 >655 mm 38 >650 mm and ≤ 685 mm
        41 >685 mm

Table 3. Data splitting schemes for the datasets used in this study. Data were divided based on length of the individual samples. Training datasets are represented in the top, while 
corresponding testing data splits are represented in the bottom part of the table.

Mean Absolute Error Mean Absolute Error 
(%)

Pearsons Correlation 
Coefficient

Accuracy in % for 
categorical division

30.16 mm %5.036% 0.68 67.51%

Table 4. Neural network testing results.

Predicted condition
True

condition Long Short % of true 
predictions

% of false 
predictions

Long
(≥ 660 mm)

74
46 28 62.16 38.84

Short
(<660 mm)

123
87 36 70.73 29.27

Table 5. Performance of the expert system.

Highest performing feedforward ANN testing

The testing of the highest performing ANN was performed with 197 
samples that were not included in the training dataset (Table 3). The 
performance of the trained feedforward ANN for the test dataset was 
measured by mean absolute error (Equations 6 and 7). A mean absolute 
error of 30.162 mm was achieved. When converted to percentage 
values, the mean absolute error was 5.03% (Equation 2, Table 4). 

The Pearson correlation coefficient was calculated to be 0.68 for the 
test dataset, which leads to the conclusion that a relatively high level 
of correlation between the true and predicted lengths of the samples 
was achieved. The network had an accuracy of 67.5% in discriminating 
between long and short specimens. The accuracy was calculated by 
transforming the true and predicted values from the test dataset into 
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categorical ones, those being either long (≥ 660mm) or short. Out of 
197 samples in the test set, 74 were from group long and 123 were 
from group short. Out of 74 long samples, 46 samples were correctly 
predicted giving the sensitivity of 62.16%. Out of 123 short samples, 
87 were correctly predicted giving the specificity of 70.73% (Table 5). 

Discussion
Changing environmental circumstances influences the natural 

migratory instincts in Pacific lampreys and causes them to travel great 
distances in order to reach their natural spawning sites. In this paper, 
we present a comparison between simple recurrent (Elman) neural 
networks and feedforward networks for the prediction of the adult 
body size of Pacific lamprey individuals according to their genotypes. 
The feedforward architecture proved to be efficient in classifying the 
phenotype of individuals according to the SNP variations of three 
markers.

A three-centimeter average difference between the actual and the 
predicted length of an individual obtained in the results is satisfactory 
for a species where the average size of an individual is about 55 cm. 
However, as promising as the results appear to be, one must take into 
consideration the inherent difficulty of predicting a complex trait that 
is largely influenced by environmental factors, not just genetic ones. 
The size of Pacific lampreys at adulthood is heavily dependent on 
environmental factors such as water temperature [39] which have not 
been accounted for in this study, as the source dataset did not delve 
into such elements.

The results were compared to similar studies, where regression 
model and artificial neural networks were used with SNP data. A 
constructed multinomial logistic regression model is designed using 
24 SNPs from eight genes. The proposed model revealed the accuracy 
for predicting intermediate eye color of 0.73 [40]. On the other hand, 
prediction of eye color using multinomial regression model based 
on six IrisPlex SNPs shown the accuracy of 0.796 for intermediate 
eye color [6]. Also, regression model found its application in trait 
prediction using whole-genome sequencing data. The results shown 
the reidentification accuracy of different pool sizes range from 0.075 to 
0.85 for eye color trait [41].

However, in ANN it was found that they are in line, or even 
outperform certain other studies by a small margin, depending on the 
dataset. SNP data were used to predict childhood allergic asthma in 
humans, and the obtained accuracy was 74.4%, which is comparable to 
the results obtained in the present study after transforming the output 
to a categorical value where the accuracy of predicting whether the 
individual is a large fish (length >66 cm) was 67.5% [42].

An ANN was used to predict various complex traits in cattle, and 
the obtained predictive correlation ranged from 0.47, to the best-case 
scenario of 0.67, whereas the correlation coefficient in the present study 
matched theirs being 0.68. These results being in line with previous 
research give the authors confidence in the test design and execution 
of the ANN in this study, and serve as another set of evidence as to 
the effectiveness of using ANN in combination with SNPs to predict 
complex traits [15]. 

The performance of different architectures of neural networks was 
compared with the task of predicting phenotypes of cattle and wheat, 
and the obtained conclusion was that nonlinear ANN outperform 
linear architectures in that scenario, as they had higher predictive 
correlations. Our results outperformed their predictive values, possibly 
due to our use of SNPs known to be involved in the targeted trait, while 

they used a large SNP panel, which might have had the unwanted side-
effect of introducing noise into the dataset [16].

A multitude of ANN models was explored for the prediction of 
marbling score in Angus cattle. The authors used different training 
algorithms, different activation functions and different numbers of 
neurons in hidden layers, and obtained a high correlation in their 
training set ranging from 0.776 to 0.858, depending on the algorithm 
and input dataset used. As they used SNP panels of 3,000 and 700 
markers, it remains to be explored whether their results could have 
been improved by limiting the number of input SNPs to only the most 
relevant ones, and the application of their methods to the dataset used 
in our study would be a good topic for further research [17].

ANNs with relatively small numbers of hidden neurons showed 
good results in our study, which is not uncommon, as even single 
hidden neuron ANNs have the ability to learn complex rules [43,44]. 
The increase in the number of hidden neurons only became necessary 
in the case of noisy datasets, where it served to handle the noisy data. 
The greatest influence on the performance of the neural network came 
from the choice of input values, and distribution of values in the input 
dataset, as the best performance was achieved by a training data split 
where the lengths of the individual samples were evenly distributed.

Conclusions 
We have compared a number of ANN models for the prediction of 

a phenotypic trait, based on SNP data. We have investigated the effects 
of network architecture, hidden layer sizes, inputs, and training data 
splits in order to obtain the highest performing neural network model 
for the prediction of adult Pacific lamprey length. The results indicate 
that using a minimal number of inputs in the dataset (three) with a 
one neuron in the hidden layer and the feedforward neural network 
architecture provides the most accurate predictive performance. These 
results correlate with previous findings in this area.

While artificial neural networks are great at approximating 
unknown relationships, they work much better in the absence of noise 
in the dataset in the case of a SNP panel, and any such further studies 
must be initiated with an exploration of the relevancy of the chosen 
inputs to the output traits in order to avoid noisy data.
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