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Abstract

The relationship between single nucleotide polymorphisms (SNPs) and phenotypes is noisy and cryptic due to the abundance of genetic factors and the influence
of environmental factors on complex traits, which makes the idea of applying artificial neural networks (ANNs) as universal approximates of complex functions
promising.

In this study, we compared different ANN architectures and input parameters to predict the adult length of Pacific lampreys, which is the primary indicator of their
total migratory distance. Feedforward and simple recurrent network architectures with a different range of input parameters and different sizes of hidden layers
were compared. Results indicate that the highest performing ANN had an accuracy of 67.5% in discriminating between long and short specimens. Sensitivity and
specificity were 62.16% and 70.73%, respectively.

Our results imply that feedforward ANN architecture with a single hidden neuron is enough to solve the problem of specimen classification. Nonetheless, while
ANN:G are useful at approximating functions with unknown relationships in the case of SNP data, additional work needs to be performed to ensure that the chosen
SNP markers are related to functional regions related to the examined trait, as the use of non-specific markers will result in the introduction of noise into the dataset.

Background

Migratory behavior is the long-distance movement of individuals,
which mostly occurs on a seasonal basis. As one of the most well-known
and studied phenomena in behavioral biology, migratory behavior
can be observed in most animal species. Animals with unpredictable
migratory patterns represent a challenge to ecologists working on
effective population management and conservation, as their movement
patterns are influenced by multiple events spread across a wide
geographic range, often encompassing international borders [1]. The
signals that start migratory behavior are largely environmental and
are usually related to the length of day in bird species, or the water
temperature in fish migration. However, there is evidence that genetics
plays an important role in the migratory predisposition of individuals
[2]. The genetic molecular mechanisms regulating migratory behavior
have already been studied in birds, and genes that control such behavior
have been discovered [3].

Single nucleotide polymorphisms (SNPs) have previously been
used to predict a variety of traits in numerous species, ranging from
quantitative [4,5], to discrete traits, such as eye color [6]. SNPs are single
base sequence variations between individuals at a specific position in
the genome. They are abundant in the genome of humans and animals,
and are commonly used to differentiate between individuals of a
species [7].

The Pacific lamprey (Entosphenus tridentatus) has recently been
studied [8] regarding SNP markers that could be used to predict the
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migratory behavior of an individual. In that study, three SNP markers
that can be used as efficient predictors of migratory behavior in this
species have been elucidated. The main characteristic found to be
indicative of the migratory behavior of such individuals was the
total body length, as it was noticed that shorter fish are less likely to
exhibit long distance migratory behavior [8]. Pacific lampreys have
an important role in the ecosystem, serving as a buffer for salmon
from predators and acting as an important sustenance food and
cultural symbol for many tribes living along the Pacific coast [9].
Pacific lampreys are a highly dispersive, anadromous type of fish,
which lacks a strict homing site. Instead, Pacific lampreys seem to
locate their spawning sites based on pheromonal cues [10,11]. This
makes the ability to predict their movements and migratory behavior
both challenging and important from a conservatory perspective. The
population of Pacific lampreys is on the decline due to environmental
issues, inadequate dam design impeding their spawning migration, and
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prejudice caused by the popular opinion that lampreys are an invasive
parasitic species, despite being indigenous to the Pacific coastal area
[12,13]. Their migratory behavior has previously been studied using
passive integrated transponder (PIT) tagging, where the correlation
with migratory distance and length was observed in adult specimens [14].

Artificial neural networks are attractive for applications in genetics
[15-18], as the relationship between SNPs and phenotypes is noisy and
cryptic due to the abundance of genetic factors and the influence of
environmental factors on complex traits [19,20]. They are applicable to
various biological problems for categorization, such as discriminating
between wild and domesticated populations of salmon and trout, as
well as regression problems, such as predicting the sulphur removal by
Acidithiobacillus species [21,22].

This study compares the predictive ability of two different neural
network architecture types, a varying number of hidden nodes, as well
as different input parameters and training data distributions. The target
parameter is the total adult body length of individual Pacific lampreys,
and is based on a previously published [8].

Methods

For problems of this type, the most frequently used ANNs are linear
feedforward, and recurrent (feedback architecture), such as the Elman
neural network [23-25]. Therefore, we have made a direct comparison
of the neural network types on identical datasets to determine which
is most suitable for predicting a phenotypical trait based on SNP data.

Feedforward networks

Single layer feedforward networks are frequently used for regression
problems and forecasting. A linear feedforward neural network is often
sufficient to properly perform classification tasks and is also applicable
to regression tasks [26-28]. They are models in which information
travels in one direction without any loops or cycles between the input
and output. Neurons are assigned random weights at the beginning,
and the sum of the products (linear combination) of the weights and
inputs is calculated at each neuron. If the value obtained is greater than
a given threshold value, the neuron “fires” and assumes the activated
value. If the threshold is not reached, it assumes a deactivated value. The
training of a network depends on outputs obtained. In the case of using
the delta rule, the error is calculated between the predicted and target
data, and the weights of the neurons are adjusted based on the error.
This “backpropagation” process is repeated until a sufficiently low level
of error is reached, or until a predefined cutoff point is reached [29]. A
representation of a feedforward neural network with one neuron in the
hidden layer, and nine input neurons is shown in Figure 1.

In this study, the input to each hidden neuron is a linear
combination of a vector of weights, input SNP variants and a “bias”
weight for the feedforward networks. The input to each neuron is
obtained as represented in Equation 1. The result is then transformed
via the sigmoid activation function f, (Equation 2) to produce the
hidden neurons output value.

th] :ﬁ£al+i%?){ﬁj 1)

q!"- the hidden neuron
a,_- the bias weight
j - input SNP variant (range of 1 to m),

m- total number of input SNP variants
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i - the input sample being processed (range of 1 to n)
t - the hidden neuron (range of 1 to s),

s - the total number of hidden neurons

witl- vector of weights

X, - input value of the SNP variant
. 1

fi= Toe’ 2)

The output layer consists of neurons as well. The inputs to neurons
in the output layer is a linear combination of outputs of neurons in
the hidden layer, weights of the output layer g, and an output layer
bias neuron b. The value obtained is transformed by the linear
transformation function p,(.) to generate the value of the predicted
adult length of an individual, as presented in Equation 3.

Yi=h: [b+ZW2¢q;j (3)
=

During the training of the neural network, the optimal weights are
established using the Levenberg-Marquardt algorithm (LMA), which
is commonly used for training ANNs [30,31], and which minimizes
the error between the predicted and the actual weight [32]. This is
performed by using a process of backpropagation that continues until
an optimal mean error squared level is reached or stopping criteria was
fulfilled.

Elman neural networks

Elman neural networks have feedback architecture and are also
referred to as recurrent neural networks. This architecture, in addition
to the layers found in the feedforward network architecture, also has
a “context” layer which saves the unweighted outputs of the previous
iterations hidden layer, thus giving the neural network a sort of short
term memory, or context that feedforward networks do not possess
[33]. Elman networks are identical to feedforward ones in their first
iteration, due to no context layer being present. After the first iteration,
the context layer is formed by the previous iterations of the hidden
layer, thus resembling a three-layer feedforward network, with one layer
being a copy of the previous iterations hidden layer. A representation
of an Elman network with one hidden neuron, and nine input neurons
is shown in Figure 2.

Equation 4 was used to calculate the hidden neuron values in the
Elman networks; it is very similar to Equation 1 with the only difference
being the addition of the context layer inputs.

[0 St @
=

q!Y - the hidden neuron

a, - the bias weight

j - input SNP variant (range of 1 to m),

m- total number of input SNP variants

i - the input sample being processed (range of 1 to n)

t - the hidden neuron (range of 1 to s),

s - the total number of hidden neurons

W%] - vector of weights

X, - input value of the SNP variant

[

C,; — vector of context weights
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Figure 1. Single layer Feedforward neural network architecture with nine inputs, one neuron in hidden layer, and one neuron in output layer.
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Figure 2. Elman (Recurrent) neural network architecture with nine inputs, one neuron in hidden layer, and one neuron in output layer.

The sigmoid function (Equation 2) was used as the activation
function in the hidden layer, with the linear transformation function
(Equation 3) being used as the activation function in the output layer.

The Elman network was trained using the Gradient Descent with
Momentum & Adaptive Learning Rate training method, which is a
backpropagation algorithm commonly used for training recurrent
ANNSs [34]. The training continued until a minimal level of error was
reached, or stopping criteria was fulfilled.

Dataset creation

A dataset containing 797 individuals that were genotyped for 94
total markers has been collected [8], with additional data describing
their size, weight and migratory distance travelled. Three of those
markers were determined to have a correlation with total adult length,
and were found to be linked to genes with association to morphological
traits (Table 1).
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In order to compare the effects of SNP markers that have no direct
correlation to the predicted trait, we have constructed three separate
datasets. One dataset contained only the SNP markers that were
determined to be related to adult length (dataset S3). A second dataset
containing the S3 SNPs and seven arbitrarily chosen SNPs (S10), and
a dataset containing all SNPs included in the study (S94). Since SNPs
cannot be represented as continuous variables, and since each SNP
has multiple possible variants in which it appears, each variant was
used as a flag value, totaling in the neural networks having three times
the number of SNPs as input neurons. An exception was the S94 dataset,
which contained two SNPs that had two variants instead of three, resulting
in a total of 280 input neurons. An example of this is shown in Table 2. The
target value in the datasets was the total length of the individual.

In order to investigate what effect the distribution of the test
data has on the training of the neural network, we have devised three
different schemes of splitting the data, H, T and Q, described in Table 3.
In total, this resulted in nine different input and test datasets.
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Table 1. Association of SNP markers to morphological traits.

SNP Marker Morphological Trait

Localizes to DYM gene which encodes
a protein associated with normal skeletal
development and brain function.

Etr_5317

aligned to the human homologue PCDH15
that encodes a membrane protein which
functions to mediate calcium-dependent
cell-cell adhesion.

Etr 4281

Does not appear to localize within any

Etr_1806 described gene region.

Table 2. Coding of input parameters of ANN.

Etr_1806 Etr_1806_aa Etr_1806_ag Etr_1806_gg
AA 1 0 0
AG 0 1 0
GG 0 0 1

The output value of the ANNs is the length of the individual
expressed in millimeters. This output value is normalized to values
between 0 and 1 (Equation 5), as this is a standard procedure done in
order to obtain better initial weights and make the training faster [29].

Reallength-Minimum length in dataset

Normalized length= - - — -
Maximum length in dataset-Minimum length in dataset

In Equation 5, the minimum length of fish in the training dataset

is 480 mm, while the maximum length of fish in the dataset is 770 mm.

Neural network training and performance measurement

We examined the accuracy and performance of neural networks that
employed the feedforward architecture with the Levenberg-Marquardt
training method, and the recurrent neural network architecture,
also known as Elman architecture, with the Gradient Descent with
Momentum and Adaptive Learning Rate training algorithm. Both
are popular optimization algorithms used in the ANN domain, and
are the default algorithms used in MATLAB for feedforward, and
Elman networks, respectively [35]. The number of hidden neurons, as
well as different input values, and training dataset distributions were
examined. The number of neurons in the hidden layer was repeatedly
increased by a single neuron, starting at one and continuing to twenty
hidden neurons, which we have chosen as an arbitrary stopping point.

Mean absolute error (MAE) and Pearson’s correlation coeflicients
were used to measure the ANN predictive performance. The Mean
absolute error was calculated based on equations (6) and (7).

1$ 1$
MAE=— ) |f.-y,[F— 6
L2l e ©)
I Ge
MAE%=| — ) |--*100 (7)
i3]

f.- predicted value,

y, - actual value,

e, - error value,

n - number of samples.

Pearson’s correlation coefficient of the predicted and actual values
(r) was calculated as a measure of linearity between input and output
values using Equation 8, where n is the total number of samples (Table 4).

nEf=(Z ) ()
s =@ ny 2y -(£n)]

=

®)

Biomed Res Clin Prac, 2017 doi: 10.15761/BRCP.1000154

Each neural network was trained using 600 samples, and a 70:30
data split, with 70% of the data being used for training, and 30% being
used for validation. The sampling was random in order to avoid any
selection bias in the dataset. Performance testing was done with 197
samples that were not used during the training phase. This is a common
data splitting scheme, frequently used in ANN applications [36].

This process was repeated for each network type using the three
datasets, and three different data splits for each dataset, resulting in a
total of 360 neural networks analyzed in this study. Data preprocessing
and analysis were performed using the R programming language [37],
while the construction and training of neural networks was performed
using MATLAB [38].

Results

The combined results of this study can be seen in Figure 3. It plots
the correlation of the target and predicted parameter for all datasets and
data splits. The individual plots (a-f) represent the correlations of the
target and predicted parameters for the different data splits. The first
row (a-c) represents the results of using the Elman architecture, while
the second row (d-f) represents the results of using the feedforward
architecture.

Predictive ability of different ANN architectures

In the case of Elman networks, no improvement was observed
with the increase of the number of neurons in the hidden layer. Their
performance decreased rapidly once the hidden layer exceeded three
neurons, especially in the case of noisy datasets, while in the case of
noise-free ones, the performance stays consistent (Figure 3a-3c). The
explanation for such a fall in accuracy is that the increase in hidden
nodes resulted in overfitting, that is, the neural network memorized the
training data, but did not learn the underlying rules that would enable
it to predict the length of new samples [35].

Feedforward networks exhibited no great changes in their
performance with the increase of neurons in the hidden layer in the
S3 dataset. However, in the noisy datasets S10 and $94, the increase of
the number of neurons served to handle the noisy inputs and increased
performance. This is most evident in $94, where the highest performing
feedforward neural networks had two, seven, and four neurons in the
hidden layer, respectively (Figure 3d-3f).

In a general comparison of Elman and feedforward neural network
architectures, Elman shows more consistency in its predictive ability
when the number of neurons is changed in the hidden layer. However,
it should be noted that the highest correlation was obtained by a single
neuron feedforward network utilizing the S3 dataset with the Q data
splitting scheme.

Predictive ability according to training data

The S3 dataset consistently provided the best results as the SNPs
used in this scenario have been previously correlated to the target
variable, thus providing a noise-free dataset, and being ideal input
variables. The S10 dataset performed comparably to the S3 dataset in
neural networks with a small hidden layer, while the performance of
the S94 dataset was erratic at best. The Q data splitting scheme (Table 3)
provided the best results, despite the performance of neural networks
worsening as the size of the hidden layer started to exceed ten neurons.
The H data split was a close second, while the T data split exhibited
the worst performance of the three, regardless of number of hidden
neurons or network architecture used.

Volume 2(5): 4-7



Besic L (2017) Application of neural networks to the prediction of a phenotypic trait of pacific lampreys based on single nucleotide polymorphism (SNP) genetic

markers

0.6- 0.6~
o 83 04- o 83 0.4- o 83
o 810 o 810 o 810
A 594 & 594 A 584
0.2- 0.2
0.0- 0.0-
' ' ' '
5 10 15 20 5 10 15 20
b

0.6-

Pearson's correlation coefficient

o s3 04 o s3
o s10 o s10
A so4 & s94
02-
00- 00-
5 10 15 20 5 10 15 20 5 10 15 20
d e f

Number of neurons in the hidden layer

Figure 3. Training performances of Feedforward and Recurrent Neural Network architectures with different dataset distribution and number of neurons in the hidden layer. The first row
(a-c) represents the Elman networks, the second row (d-f) represents feedforward networks. The blank squares are the S3 dataset networks, S10 is represented by blank circles, while S94 is
represented by blank triangles. The first column is split according to the H scheme, second column is the T scheme, while the third column is the Q scheme. The vertical axis is the Pearsons
r coefficient, while the horizontal axis represents the number of neurons in the hidden layer.

Table 3. Data splitting schemes for the datasets used in this study. Data were divided based on length of the individual samples. Training datasets are represented in the top, while
corresponding testing data splits are represented in the bottom part of the table.

Training dataset

H split T split Q split
Number of samples Length Number of samples Length Number of samples Length
300 <660 mm 200 <610 mm 150 <610 mm
300 > 660 mm 200 >610 mm and < 655 mm 150 >610 mm and < 650 mm
200 >655 mm 150 >650 mm and < 685 mm
150 >685 mm
Testing dataset
H split T split Q split
Number of samples Length Number of samples Length Number of samples Length
145 <660 mm 6 <610 mm 56 less than 610 mm
52 > 660 mm 39 >610 mm and < 655 mm 89 >610 mm and < 650 mm
152 >655 mm 38 >650 mm and < 685 mm
41 >685 mm
Highest Performing feedforward ANN testing Table 4. Neural network testing results.
The testing of the highest performing ANN was performed with 197 Mean Absolute Error V¢ Ab(?,zl)me Frror Pearsggzﬂ(i::iréiamn ::tcecgf:zllgiésfiz;
samples that were not included in the training dataset (Table 3). The 30.16 mm %5.036% 068 6751%

performance of the trained feedforward ANN for the test dataset was
measured by mean absolute error (Equations 6 and 7). A mean absolute

Table 5. Performance of the expert system.
error of 30.162 mm was achieved. When converted to percentage

. Predicted conditi
values, the mean absolute error was 5.03% (Equation 2, Table 4). reciefed condition
True Long Short % of true % of false
The Pearson correlation coefficient was calculated to be 0.68 for the condition predictions | predictions
test dataset, which leads to the conclusion that a relatively high level Long
. . (> 660 mm) 46 28 62.16 38.84
of correlation between the true and predicted lengths of the samples 74
was achieved. The network had an accuracy of 67.5% in discriminating Short
between long and short specimens. The accuracy was calculated by (<660 mm) 87 36 70.73 29.27
transforming the true and predicted values from the test dataset into 123
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categorical ones, those being either long (= 660mm) or short. Out of
197 samples in the test set, 74 were from group long and 123 were
from group short. Out of 74 long samples, 46 samples were correctly
predicted giving the sensitivity of 62.16%. Out of 123 short samples,
87 were correctly predicted giving the specificity of 70.73% (Table 5).

Discussion

Changing environmental circumstances influences the natural
migratory instincts in Pacific lampreys and causes them to travel great
distances in order to reach their natural spawning sites. In this paper,
we present a comparison between simple recurrent (Elman) neural
networks and feedforward networks for the prediction of the adult
body size of Pacific lamprey individuals according to their genotypes.
The feedforward architecture proved to be efficient in classifying the
phenotype of individuals according to the SNP variations of three
markers.

A three-centimeter average difference between the actual and the
predicted length of an individual obtained in the results is satisfactory
for a species where the average size of an individual is about 55 cm.
However, as promising as the results appear to be, one must take into
consideration the inherent difficulty of predicting a complex trait that
is largely influenced by environmental factors, not just genetic ones.
The size of Pacific lampreys at adulthood is heavily dependent on
environmental factors such as water temperature [39] which have not
been accounted for in this study, as the source dataset did not delve
into such elements.

The results were compared to similar studies, where regression
model and artificial neural networks were used with SNP data. A
constructed multinomial logistic regression model is designed using
24 SNPs from eight genes. The proposed model revealed the accuracy
for predicting intermediate eye color of 0.73 [40]. On the other hand,
prediction of eye color using multinomial regression model based
on six IrisPlex SNPs shown the accuracy of 0.796 for intermediate
eye color [6]. Also, regression model found its application in trait
prediction using whole-genome sequencing data. The results shown
the reidentification accuracy of different pool sizes range from 0.075 to
0.85 for eye color trait [41].

However, in ANN it was found that they are in line, or even
outperform certain other studies by a small margin, depending on the
dataset. SNP data were used to predict childhood allergic asthma in
humans, and the obtained accuracy was 74.4%, which is comparable to
the results obtained in the present study after transforming the output
to a categorical value where the accuracy of predicting whether the
individual is a large fish (length >66 cm) was 67.5% [42].

An ANN was used to predict various complex traits in cattle, and
the obtained predictive correlation ranged from 0.47, to the best-case
scenario of 0.67, whereas the correlation coefficient in the present study
matched theirs being 0.68. These results being in line with previous
research give the authors confidence in the test design and execution
of the ANN in this study, and serve as another set of evidence as to
the effectiveness of using ANN in combination with SNPs to predict
complex traits [15].

The performance of different architectures of neural networks was
compared with the task of predicting phenotypes of cattle and wheat,
and the obtained conclusion was that nonlinear ANN outperform
linear architectures in that scenario, as they had higher predictive
correlations. Our results outperformed their predictive values, possibly
due to our use of SNPs known to be involved in the targeted trait, while
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they used a large SNP panel, which might have had the unwanted side-
effect of introducing noise into the dataset [16].

A multitude of ANN models was explored for the prediction of
marbling score in Angus cattle. The authors used different training
algorithms, different activation functions and different numbers of
neurons in hidden layers, and obtained a high correlation in their
training set ranging from 0.776 to 0.858, depending on the algorithm
and input dataset used. As they used SNP panels of 3,000 and 700
markers, it remains to be explored whether their results could have
been improved by limiting the number of input SNPs to only the most
relevant ones, and the application of their methods to the dataset used
in our study would be a good topic for further research [17].

ANNSs with relatively small numbers of hidden neurons showed
good results in our study, which is not uncommon, as even single
hidden neuron ANNs have the ability to learn complex rules [43,44].
The increase in the number of hidden neurons only became necessary
in the case of noisy datasets, where it served to handle the noisy data.
The greatest influence on the performance of the neural network came
from the choice of input values, and distribution of values in the input
dataset, as the best performance was achieved by a training data split
where the lengths of the individual samples were evenly distributed.

Conclusions

We have compared a number of ANN models for the prediction of
a phenotypic trait, based on SNP data. We have investigated the effects
of network architecture, hidden layer sizes, inputs, and training data
splits in order to obtain the highest performing neural network model
for the prediction of adult Pacific lamprey length. The results indicate
that using a minimal number of inputs in the dataset (three) with a
one neuron in the hidden layer and the feedforward neural network
architecture provides the most accurate predictive performance. These
results correlate with previous findings in this area.

While artificial neural networks are great at approximating
unknown relationships, they work much better in the absence of noise
in the dataset in the case of a SNP panel, and any such further studies
must be initiated with an exploration of the relevancy of the chosen
inputs to the output traits in order to avoid noisy data.
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